
Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte

6

IDENTIFICACIÓN DE ÁREAS A DESFRAGMENTAR PARA REDUCIR LOS IMPACTOS DE LAS INFRAESTRUCTURAS LINEALES DE TRANSPORTE EN LA BIODIVERSIDAD

(Segunda edición, ampliada y revisada)

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte

6

IDENTIFICACIÓN DE ÁREAS A DESFRAGMENTAR PARA REDUCIR LOS IMPACTOS DE LAS INFRAESTRUCTURAS LINEALES DE TRANSPORTE EN LA BIODIVERSIDAD

(Segunda edición, ampliada y revisada)

Catálogo de publicaciones del Ministerio https://www.miteco.gob.es/es/ministerio/servicios/publicaciones/ Catálogo general de publicaciones oficiales. https://cpage.mpr.gob.es/

TÍTULO: Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras lineales de transporte en la biodiversidad (Segunda edición ampliada y revisada). Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte, número 6.

DIRECCIÓN TÉCNICA DEL PROYECTO

Manuel Oñorbe Esparraguera (MITECO)

COORDINACIÓN DEL PROYECTO

María Jesús González (Tragsatec)

Francisco José García (Tragsatec)

REALIZACIÓN TÉCNICO-CIENTÍFICA

Daniela Gaspar Garcia de Matos (Tragsatec)

COLABORACIÓN

Alba Estrada (Instituto Pirenaico de Ecología, IPE-CSIC)

Carme Rosell (Minuartia)

AGRADECIMIENTOS

Se agradece a las personas que han aportado información, asesoramiento o han participado en la revisión de los sucesivos borradores, en especial a: Jorgelina Gutiérrez Angonese (Tragsatec); José Miguel Tolosa Polo (Jefatura Provincial de Tráfico de Cantabria. Dirección General de Tráfico. Ministerio del Interior); Sonia Díaz de Corcuera Ruiz de Oña (Dirección de Tráfico. Gobierno Vasco); Isabel Torre Millán (Dirección de Tráfico. Gobierno Vasco); Ramón Lamiel Villaró (Servicio Catalán de Tráfico. Generalitat de Cataluña).

El presente documento fue realizado en el marco del Encargo a Tragsatec "Estrategia de Permeabilización y Desfragmentación de Infraestructuras de Transporte" (Expediente 21BDES019), financiado por la Dirección General de Biodiversidad, Bosques y Desertificación del Ministerio para la Transición Ecológica y el Reto Demográfico.

Esta publicación se ha elaborado en el contexto de las actividades del *Grupo de Trabajo de Fragmentación de Hábitats* causada por Infraestructuras de Transporte, dependiente de la Comisión Estatal para el Patrimonio Natural y la Biodiversidad. Este grupo está coordinado por la Dirección General de Biodiversidad, Bosques y Desertificación y cuenta con la participación de técnicos responsables de los ámbitos del transporte y el medio ambiente de comunidades autónomas, diputaciones, cabildos insulares y la Administración General del Estado.

AVISO LEGAL: los contenidos de esta publicación podrán ser reutilizados, citando la fuente y la fecha, en su caso, de la última actualización.

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

EDITA

© SUBSECRETARÍA Gabinete Técnico

Edición: 2024

NIPO (papel): 665-24-027-0 NIPO (en línea): 665-24-028-6 Depósito legal: M-14642-2024 Maquetación: Scienseed, S.L.

1	Introducción	9
	1.1 Síntesis del procedimiento utilizado y terminología de	
	cuadrículas identificadas	10
		10
2	Metodología y resultados	16
	2.1 Índices y subíndices de base	19
	2.1.1 Índice de vulnerabilidad biológica	19
	2.1.1.1 Índice de áreas agrarias de alto valor natural (AVN)	20
	2.1.1.2 Índice de Biodiversidad (IB)	21
	2.1.1.3 Índice de riqueza de especies objetivo (REO)	27
	2.1.1.4 Índice de abundancia de ríos y humedales (RH)	33
	2.1.1.5 Índice de áreas naturales protegidas (ANP)	35
	2.1.1.6 Índice de importancia para la conectividad ecológica (ICE)	37
	2.1.2 Tamaño efectivo de malla - TEM	40
	2.1.3 Índice de densidad de infraestructuras lineales de transporte	44
	2.2 Índices de importancia para la mitigación de los efectos de las	
	vías de transporte	45
	2.2.1 Identificación de cuadrículas importantes a desfragmentar a nivel estatal	48
	2.2.2 Identificación de cuadrículas importantes a desfragmentar en el	
	ámbito autonómico	51
	2.3 Identificación de cuadrículas prioritarias y de máxima prioridad	
	a desfragmentar	53
	2.3.1 Criterios complementarios	53
	2.3.1.1 Intersecciones entre la red viaria y corredores ecológicos	53
	2.3.1.2 Densidad de Accidentes con fauna silvestre	61
	2.3.1.3 Intersecciones entre la red viaria y vías pecuarias	64
	2.3.2 Análisis de coincidencias e identificación de cuadrículas prioritarias	0.
	a desfragmentar en ámbito autonómico	65
	2.3.3 Análisis de coincidencias e identificación de cuadrículas de	
	máxima prioridad a desfragmentar en ámbito autonómico	67
	2.4 Cartografía generada por Comunidad Autónoma	68
	2.4.1 Andalucía	71
	2.4.2 Aragón	78
	2.4.3 Canarias	85
	2.4.4 Cantabria	86
	2.4.5 Castilla-La Mancha	92
	2.4.6 Castilla y León	99
	2.4.7 Cataluña/Catalunya	106
	2.4.8 Comunidad de Madrid	113
	2.4.9 Comunidad Foral de Navarra	120
	2.4.10 Comunitat Valenciana	127
	2.4.11 Extremadura	134

2.4.12 Galicia 141 2.4.13 Illes Balears 147 2.4.14 La Rioja 148 2.4.15 País Vasco/Euskadi 155 2.4.16 Principado de Asturias 161 2.4.17 Región de Murcia 167 2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 174 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 3 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad 186 II. Análisis de conectividad ecológica 236 III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264 Bibliografía 280			
2.4.14 La Rioja 2.4.15 País Vasco/Euskadi 2.4.16 Principado de Asturias 161 2.4.17 Región de Murcia 167 2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 186 I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.12 Galicia	141
2.4.15 País Vasco/Euskadi 2.4.16 Principado de Asturias 161 2.4.17 Región de Murcia 2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 3 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica 236 III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.13 Illes Balears	147
2.4.16 Principado de Asturias 2.4.17 Región de Murcia 2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 3 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.14 La Rioja	148
2.4.17 Región de Murcia 2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica 236 III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.15 País Vasco/Euskadi	155
2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal 2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica 236 III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.16 Principado de Asturias	161
2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal 176 Anexos 186 I. Especies consideradas para el cálculo del índice de biodiversidad 186 II. Análisis de conectividad ecológica 236 III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma 248 IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		2.4.17 Región de Murcia	167
Anexos I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		•	174
I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		·	476
I. Especies consideradas para el cálculo del índice de biodiversidad II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		a nivei estatai	176
II. Análisis de conectividad ecológica III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 236	3	Anexos	186
III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		I. Especies consideradas para el cálculo del índice de biodiversidad	186
viaria por Comunidad Autónoma IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 248 269		II. Análisis de conectividad ecológica	236
IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar		III. Cartografía de intersecciones entre corredores ecológicos y la red	
al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar 264		viaria por Comunidad Autónoma	248
identificación de áreas a desfragmentar 264		IV. Comparación de enfoques metodológicos y nuevas aportaciones	
		al documento de actualización de prescripciones técnicas para la	
4 Bibliografía 280		identificación de áreas a desfragmentar	264
Dibilogidia	1	Rihliografía	290
	4	Dibliografia	280

1 Introducción

1

Introducción

La fragmentación y pérdida de hábitats naturales y seminaturales se reconoce como uno de los principales impulsores de la actual crisis de biodiversidad (Turner 1996, Fahrig 2003, Santos y Tellería 2006). Entre los diversos factores que contribuyen a este proceso de fragmentación se encuentran las infraestructuras de transporte, cuyos efectos pueden variar en importancia según múltiples factores.

En el caso de España, contamos con una extensa red de infraestructuras de transporte, comprendiendo aproximadamente 16.000 km de autopistas y autovías, así como unos 150.000 km de carreteras de menor categoría (PITVI¹ 2012-2024). Por lo que respecta a ferrocarriles, según la Declaración sobre la Red 2025 de ADIF y ADIF Alta Velocidad, nuestro país cuenta, respectivamente, con 11.674,9 kilómetros de red convencional y 3.973,3 km de líneas de alta velocidad en funcionamiento. La barrera que estos ejes lineales representan para los desplazamientos de la fauna silvestre, y en general el fenómeno conocido como fragmentación de hábitats, ha emergido como uno de los factores más amenazantes para la conservación de la diversidad biológica en Europa.

Desde 1999, el Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO), a través de la Subdirección General de Biodiversidad Terrestre y Marina (SGBTM), coordina el Grupo de Trabajo de Fragmentación de Hábitats causada por Infraestructuras de Transporte (GTFHT).

Desde dicho Grupo de Trabajo se ha venido elaborando una serie de "Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte", en los cuales se presentan medidas para dar soluciones integradas a la problemática de la fragmentación de hábitats en este ámbito.

Particularmente, el documento de prescripciones técnicas número 6 "Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras lineales de transporte en la biodiversidad. Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte" (MAGRAMA, 2013; en adelante, PT6-2013), identifica tramos de vías en uso (carreteras y ferrocarriles) prioritarios para acometer trabajos de desfragmentación, a partir de la cartografía existente en aquel momento y de diversa información ecológica referente a distribución y estatus de conservación de especies, hábitats, corredores ecológicos, registros de siniestralidad vial con implicación de fauna silvestre, entre otros. Como resultado, se calcularon diversos índices que permitieron identificar áreas prioritarias a desfragmentar en cada Comunidad Autónoma.

Respondiendo a los adelantos técnicos y científicos en la materia, junto a una mayor disponibilidad de información, en 2023 se llevaron a cabo tareas para la actualización del documento *PT6-2013* y se avanzó en la identificación de áreas prioritarias que requieren intervenciones de

[1] Plan de Infraestructuras, Transporte y Vivienda (PITVI) 2012 – 2024. Ministerio de Transportes y Movilidad Sostenible

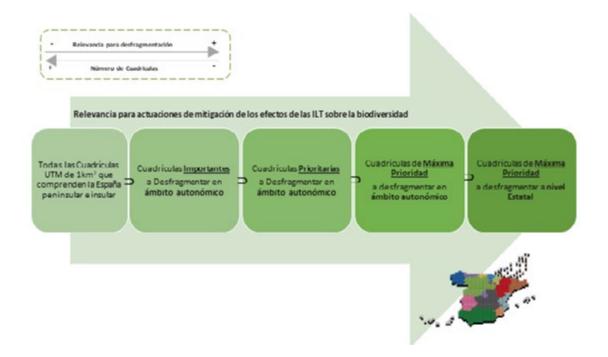
desfragmentación por parte de los diversos actores involucrados en su gestión.

En el presente documento se detallan, con un enfoque práctico, los procedimientos técnicos y criterios científicos empleados en dicha actualización, está dirigido específicamente a sectores y actores involucrados en el diseño, seguimiento y gestión de infraestructuras de transporte, brindando herramientas para evaluar la fragmentación generada por vías de transporte e identificar las zonas que requieren intervenciones de desfragmentación. El documento ha sido planteado siguiendo una estructura que facilita la comprensión y reproducción de los procedimientos, comenzando con una visión general, seguida del desarrollo metodológico de cada índice, su integración y los análisis de coincidencias que condujeron a la identificación de áreas más relevantes para las acciones de desfragmentación.

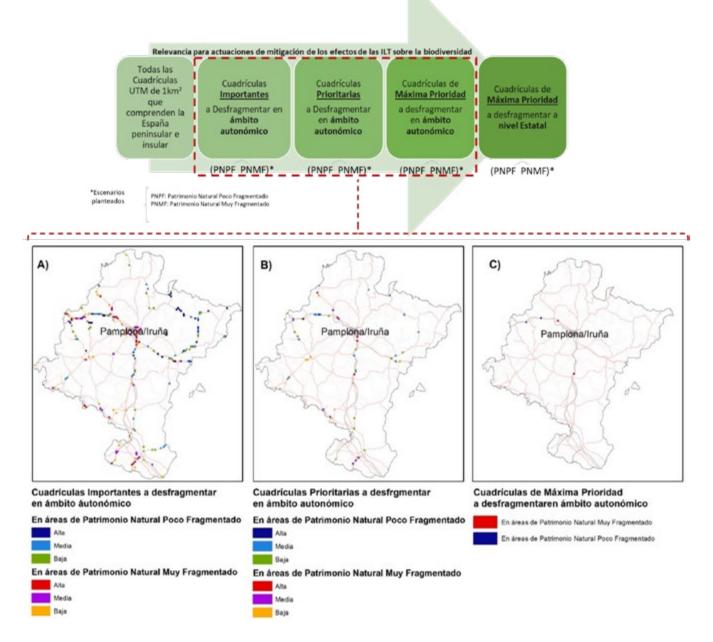
1.1 Síntesis del procedimiento utilizado y terminología de cuadrículas identificadas

El proceso de identificación de áreas a desfragmentar detallado en este documento se plantea como un procedimiento gradual, que implica el filtrado de cuadrículas de 1 km² en base a su relevancia para la mitigación de los impactos de las infraestructuras lineales de transporte (ILT) sobre la biodiversidad.

Las cuadrículas finalmente identificadas representan áreas críticas donde las ILT atraviesan zonas particularmente vulnerables y, además, concurren otros indicadores de la necesidad de implementación de medidas para mejorar la permeabilidad de estos lugares, por ejemplo, la incidencia de accidentes con fauna silvestre o la presencia de áreas clave para la conectividad ecológica.


El procedimiento parte de la totalidad de cuadrículas UTM de 1 km² que abarcan tanto la España peninsular como la insular. A medida que se avanza en las distintas etapas del procedimiento, se incrementan los criterios de filtrado, permitiendo la identificación de diversas tipologías de cuadrículas. Este proceso culmina al identificar aquellas que requieren máxima prioridad de actuación, tanto a nivel autonómico como estatal (Figura 1). Este proceso se desarrolla contemplando dos escenarios alternativos en los que interesa actuar:

- Áreas de patrimonio natural muy fragmentado: se corresponden con áreas muy fragmentadas que mantienen zonas con elevada vulnerabilidad biológica, donde la actuación es crucial para mitigar, en lo posible, su degradación.
- Áreas de patrimonio natural poco fragmentado: referente a zonas que sufren poca fragmentación, presentan altos valores de vulnerabilidad biológica, y donde la densidad de vías de transporte es relativamente elevada.


Mediante la integración de tres índices base: 1) índice de vulnerabilidad biológica, 2) tamaño efectivo de malla (indicador del grado de fragmentación del territorio) y 3) densidad de infraestructuras de transporte, se calculan dos nuevos índices que permiten medir la relevancia de cada km² del territorio para la aplicación de acciones de desfragmentación, en cada uno de los escenarios planteados:

- Índice de importancia para mitigación en áreas de patrimonio natural muy fragmentado.
- Índice de importancia para mitigación en áreas de patrimonio natural poco fragmentado.

Así, para cada tipología de cuadrícula identificada a lo largo del procedimiento, se establecen dos subconjuntos de cuadrículas correspondientes a cada uno de los escenarios, como se ilustra en el ejemplo de la figura 2.

Figura 1. Tipologías de cuadrículas establecidas en el proceso de identificación de áreas a desfragmentar. Dichas tipologías se determinan siguiendo el proceso gradual de filtrado de cuadrículas basado en la coincidencia de indicadores de la necesidad de actuaciones de desfragmentación tales como el grado de vulnerabilidad biológica a las ILT, la incidencia de accidentes con fauna silvestre y la ocurrencia de puntos críticos para la conectividad ecológica.

Figura 2. Ejemplo de tipologías y subconjuntos de cuadrículas identificadas en los escenarios de patrimonio natural muy fragmentado y poco fragmentado.

Una vez calculados los **Índices de importancia para mitigación** en ambos escenarios, para la totalidad de cuadrículas del territorio, se selecciona para cada Comunidad Autónoma el 1% de las cuadrículas con mayor valor en cada uno de dichos índices y se establecen los conjuntos de **cuadrículas importantes a desfragmentar en ámbito autonómico** (Figura 2 – A).

En esta fase del procedimiento se logra focalizar la atención en puntos cruciales para acciones de desfragmentación, sin embargo, el volumen de cuadrículas identificadas es significativamente alto lo que dificulta su gestión debido a la substancial necesidad de recursos. Por lo tanto, y a fines prácticos, es necesario limitar este conjunto de cuadrículas importantes a aquellas que poseen mayor prioridad para la implementación de acciones de desfragmentación. Con este fin, se incrementan los niveles de exigencia en los análisis incorporando tres variables complementarias: 1) Intersecciones entre corredores ecológicos y la red viaria, 2) Densidad de accidentes con fauna silvestre y 3) Intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria.

Mediante un análisis de coincidencias, se identifican como **cuadrículas prioritarias a desfragmentar en ámbito autonómico** aquellas cuadrículas importantes en las que coinciden, accidentes con fauna silvestre o bien, intersecciones entre corredores ecológicos y la red viaria. Una vez identificadas, se reclasifican² dichas cuadrículas en tres niveles de prioridad: a) Alta, b) Media y c) Baja. Finalmente, se ajusta al alza, el grado de prioridad de aquellas cuadrículas en las que ocurren intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria (Figura 2 – B).

En base a las cuadrículas identificadas en la etapa anterior y a las tres variables complementarias, se realizan análisis de coincidencias aún más restrictivos para identificar las cuadrículas de máxima prioridad a desfragmentar en ámbito autonómico. En este caso, para ser de máxima prioridad, una cuadrícula debe tener categoría de prioridad media o alta y en ella deben coincidir tanto accidentes con fauna silvestre como intersecciones entre corredores ecológicos y la red viaria. De forma similar a la etapa anterior, se incrementa el valor de la cuadrícula en función de la presencia de intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria. Esta última etapa del procedimiento permite identificar para cada una de las Comunidades Autónomas (CC.AA.) un número manejable de cuadrículas de máxima relevancia para actuaciones de desfragmentación (Figura 2 - C).

Siguiendo la lógica de aumento del nivel de exigencia de los análisis, las "cuadrículas de máxima prioridad a desfragmentar a nivel estatal" se obtienen mediante un análisis de coincidencias que identifican, dentro del conjunto de cuadrículas clasificadas como de alta prioridad en ámbito autonómico, aquellas en las que coinciden: a) accidentes con fauna silvestre, b) intersecciones entre corredores ecológicos y la red viaria y, c) intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria.

En la figura 3 se recoge gráficamente el resumen del procedimiento seguido y las tipologías de cuadrículas identificadas en las diferentes etapas.

[2] La reclasificación se ha realizado en base a la suma de los valores de las variables que coinciden en cada cuadrícula.

1) En ámbito autonómico A) B) C) Guadriculas de Máxima Prioridad a desfragmentaren ámbito autono En áreas de Patrimonio Natural Muy Fragmentado -----Resultantes de la selección del 1% del Cuadriculas Conjunto de cuadrículas de prioridad importantes "Alta" y "Media" en ámbito total de cuadriculas en cada desfragmentar ambito en comunidad autónoma, con mayor autonómico donde coinciden: autonómico, en las que coinciden: valor en cada uno de los dos índices intersecciones entre corredores - intersecciones entre corredores de importancia de mitigación de los ecológicos y la red viaria y/o ecológicos y la red viaria Y efectos de vias de transporte. accidentes con fauna silvestre Accidentes con fauna silvestre La presencia de intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria - factor de ajuste que incrementa el grado de prioridad de las cuadrículas. 2) A nivel estatal CPINAL PROF O CPMax-PNNF v CPMax-PNPF Conjunto de cuadrículas de alta prioridad en ámbito autonómico en las Accidentes con fauna silvestre Intersecciones entre corredores ecológicos y la red viaria Intersecciones entre Red Nacional de Vías Pecuarias y la red viaria (Se consideran, en conjunto, todas las CCAA peninsulares)

Figura 3. 1) Tipologías de cuadrículas identificadas en ámbito autonómico (Ejemplo de referencia: Comunidad Foral de Navarra); 2) Tipología de cuadrículas identificadas a nivel estatal.

2 Metodología y resultados

2

Metodología y resultados

Para la actualización de la PT6-2013 se han tomado como base los procedimientos descritos en dicho documento, realizándose las adaptaciones metodológicas necesarias para la incorporación de la información relevante más actualizada que se dispone, como por ejemplo, la referente a las Vías Pecuarias integradas a la Red Nacional de Vías Pecuarias (RNVP³) y los corredores ecológicos identificados en el trabajo "Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica" (MITECO 2023).

Los análisis se han efectuado sobre la totalidad del territorio español peninsular, islas Baleares y Canarias, con una resolución espacial de 1 km². Los sistemas de coordenadas utilizados han sido ETRS89 Zona UTM 30N para península y Baleares, y REGCAN95 UTM 28N para Canarias.

Los procedimientos se han llevado a cabo en cinco etapas como se describe a continuación:

1. Obtención y reescalado de índices y subíndices de base

- a. Índice de vulnerabilidad biológica
 - i. Índice de áreas agrarias de alto valor natural
 - ii. Índice de biodiversidad
 - iii. Índice de riqueza de especies objetivo
 - iv. Índice de abundancia de ríos y humedales

- v. Índice de presencia de áreas naturales protegidas
- vi. Índice de importancia para la conectividad ecológica
- b. Tamaño efectivo de malla
- c. Índice de densidad de infraestructura de transporte

2. Obtención y reescalado de índices de importancia para la mitigación de los efectos de las infraestructuras lineales de transporte

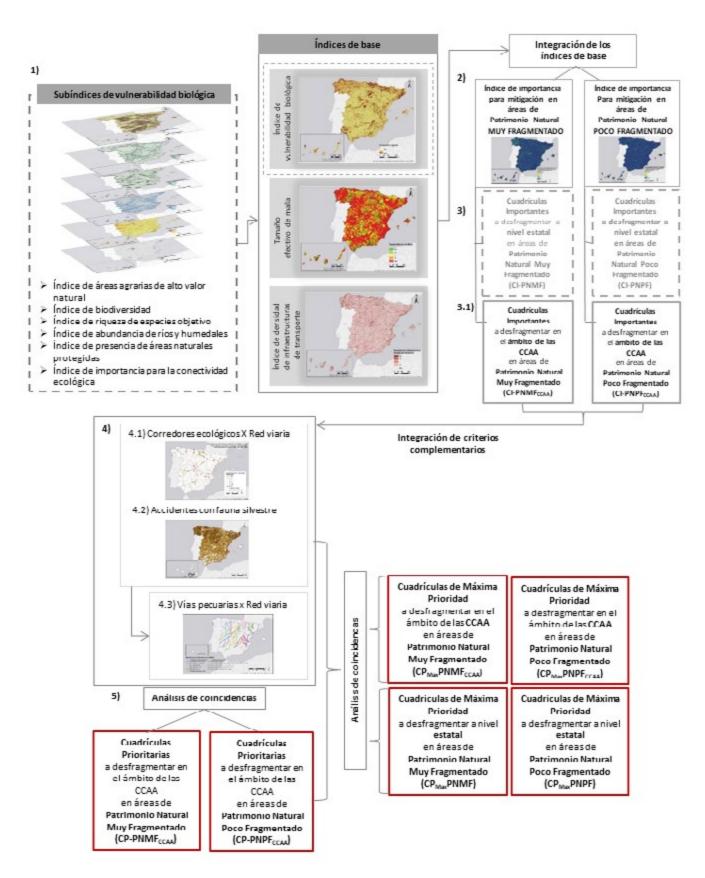
- a. En áreas de patrimonio natural poco fragmentado
- b. En áreas de patrimonio natural muy fragmentado

3. Identificación y clasificación de cuadrículas importantes a desfragmentar

- a. Cuadrículas importantes a desfragmentar a nivel estatal en áreas de patrimonio natural poco fragmentado (CI-PNPF).
- b. Cuadrículas importantes a desfragmentar a nivel estatal en áreas de patrimonio natural muy fragmentado (CI-PNMF)
- c. Cuadrículas importantes a desfragmentar en el ámbito de las CC.AA. en áreas de patrimonio natural poco fragmentado (CI-PNPF_{CC.AA})
- [3] https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/vias_pecuarias.html

d. Cuadrículas importantes a desfragmentar en el ámbito de las CC.AA. en áreas de patrimonio natural muy fragmentado (CI-PNMF_{CC.AA.})

4. Obtención y clasificación de variables complementarias


- a. Intersecciones entre la red viaria y corredores ecológicos
- b. Densidad de accidentes con fauna silvestre
- c. Intersecciones entre la red viaria y vías pecuarias

5. Análisis de coincidencias e identificación de cuadrículas prioritarias y de máxima prioridad a desfragmentar

- a. Cuadrículas prioritarias a desfragmentar en el ámbito de las CC.AA. en área de patrimonio natural poco fragmentado (CP-PNPF_{CC.AA})
- b. Cuadrículas prioritarias a desfragmentar en el ámbito de las CC.AA. en área de patrimonio natural muy fragmentado (CP-PNMF_{CC.AA.})
- c. Cuadrículas de máxima prioridad a desfragmentar en el ámbito de las CC.AA. en área de patrimonio natural poco fragmentado (${\rm CP_{Max}PNPF_{CC.}}_{\rm AA}$)
- d. Cuadrículas de máxima prioridad a desfragmentar en el ámbito de las CC.AA. en área de patrimonio natural muy fragmentado ($CP_{Max}PNMF_{CC.}$
- e. Cuadrículas de máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy y poco fragmentado CP_{Max}P-NMFyPNPF_{CCAA})

- f. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal en área de patrimonio natural poco fragmentado ($CP_{Max}PNPF$)
- g. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal en área de patrimonio natural muy fragmentado ($CP_{Max}PNMF$)

En la figura 4 se presenta un esquema general con las diferentes etapas del procedimiento. El desarrollo metodológico específico para la obtención e integración de cada una de las variables, así como la cartografía resultante se presentan en sus epígrafes correspondientes.

Figura 4. Esquema metodológico general. Se presenta de manera esquemática el procedimiento seguido para la identificación de áreas a desfragmentar.

2.1 Índices y subíndices de base

2.1.1 Índice de vulnerabilidad biológica

La determinación de las áreas prioritarias a desfragmentar requiere conocer previamente el valor de conservación que presenta el territorio. El índice de vulnerabilidad biológica (VB) refleja estas características en términos de valor natural y de vulnerabilidad a la pérdida de biodiversidad como consecuencia de los efectos de las infraestructuras lineales de transporte (ILT). Dicho índice está compuesto por los siguientes subíndices: Índice de áreas agrarias de alto valor natural (AVN), índice de biodiversidad (IB), índice de riqueza de especies objetivo (REO), índice de abundancia de ríos y humedales (RH), índice de presencia de áreas naturales protegidas (ANP) e índice de importancia para la conectividad ecológica (ICE).

Para la integración de los subíndices antes referidos se han reescalado sus valores entre 0 y 50 y aplicado la siguiente fórmula:

El índice calculado se ha vuelto a reescalar a valores entre 0 y 50 para su posterior integración con los demás índices de base (tamaño efectivo de malla y densidad de infraestructura de transporte). La representación cartográfica de VB se muestra en la figura 5.

A continuación, se detallan los procedimientos para la obtención de los subíndices componentes del VB.

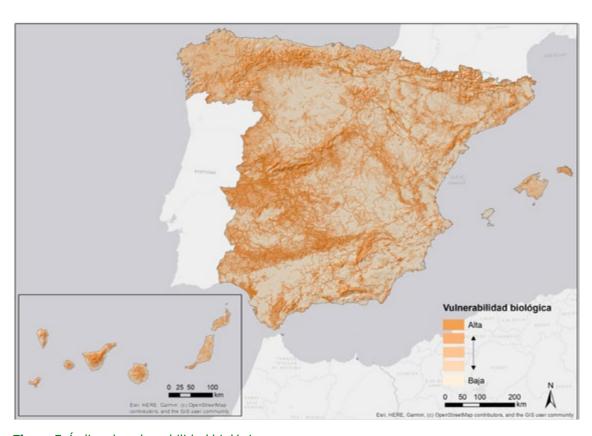


Figura 5. Índice de vulnerabilidad biológica.

2.1.1.1 Índice de áreas agrarias de alto valor natural (AVN)

Como información de partida se ha tomado la cartografía resultante del estudio "Propuesta Metodológica AVN (Alto Valor Natural) homogénea para España" (Olivero y Martín, 2021). Dicha cartografía, con resolución espacial de 1 km², representa la **contribución del factor agrario**⁴ (más allá de la contribución que puedan aportar otros factores ambientales no agrarios) para incrementar el valor de biodiversidad en el territorio. Es decir, identifica áreas agrarias que presentan un alto valor natural como consecuencia de las prácticas realizadas. Originalmente se expresa mediante un rango de valores comprendidos entre 0 y 1. El valor 0 indica que los factores no agrarios son suficientes para explicar la presencia de un elevado valor de biodiversidad. El valor 1 indica la máxima contribución del factor agrario a la presencia de alta biodiversidad. Para su posterior integración al *Índice de Vulnerabilidad Biológica*, estos valores se han reescalado entre 0 y 50 (Figura 6).

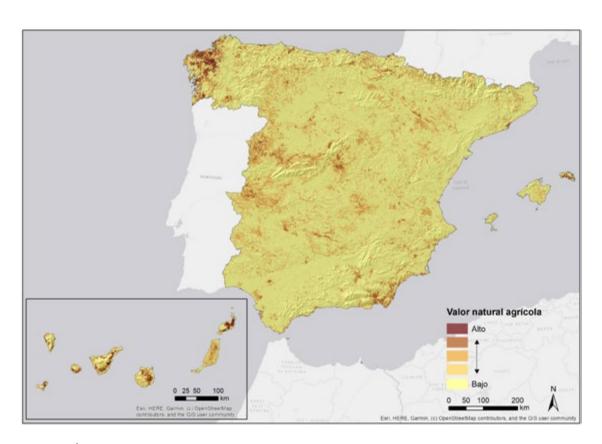


Figura 6. Índice de áreas agrarias de alto valor natural (AVN).

[4] Referida en la obra original como contribución agraria positiva.

2.1.1.2 Índice de Biodiversidad (IB)

El valor de biodiversidad del territorio se ha estimado teniendo como base científica de referencia el índice propuesto por Díaz et al. (2020) y considerando las adaptaciones incluidas en la "Guía Metodológica para la Identificación de los Elementos de la Infraestructura Verde de España" (MITECO, 2021). Este índice, relacionado con la presencia de especies amenazadas en el territorio, permite establecer una aproximación a su valor para la conservación en función de tres aspectos: i) el grado de amenaza, entendiendo que la presencia de especies amenazadas implica un mayor valor de conservación del territorio; ii) el papel ecosistémico de cada especie, asociando un mayor valor de conservación a los ámbitos geográficos con presencia de especies ingenieras o clave; y iii) la disponibilidad y calidad de información sobre la especie, incrementando el valor del índice según se disponga de un mejor conocimiento de la especie. El valor del índice de biodiversidad se calcula para cada una de las especies selecionadas, como la suma de los valores de las tres variables mencionadas (grado de amenaza, papel ecosistémico y disponibilidad y calidad de información).

Las etapas del procedimiento metodológico aplicado para la obtención del **Índice de Biodiversidad** (IB) se sintetizan en la figura 7 y se describen a continuación.

Figura 7. Esquema metodológico general para la obtención del índice de diversidad biológica (IB).

1) Selección de especies de estudio

Se han considerado aquellas especies con información disponible sobre su distribución espacial incluidas en: i) los Anexos II, IV y V de la Directiva de Hábitat (92/43/CEE); ii) los anexos de la Directiva Aves (2009/147/CE); y iii) el Listado de Especies Silvestres en Régimen de Protección Especial y Catálogo Español de Especies Amenazadas, RD 139/2011, (en adelante LESRPE-CEEA)⁵.

Como resultado del proceso de selección de especies, se ha obtenido un listado con un total de 600 taxones (Anexo I). En la tabla 1 se detalla el número de especies seleccionadas por grupo taxonómico y su representatividad.

2) Asignación de valores a las variables

Como se señaló previamente, el índice de biodiversidad está determinado por tres parámetros relacionados con los taxones seleccionados en el punto anterior:

a) Grado de amenaza

Se han considerado las categorías de amenaza de la UICN, teniendo en cuenta la información de la evaluación más reciente en España. Los valores adoptados por la variable varían entre 1 y 6, de acuerdo con la clasificación recogida en la tabla 2.

Tabla 1. Número de especies según grupo taxonómico y su representatividad en el cálculo del índice de biodiversidad.

Gupo Taxonómico	№ Especies	Representatividad (%)
Anfibios	16	2,67
Aves	209	34,83
Invertebrados	38	6,33
Mamíferos	44	7,33
Peces Continentales	28	4,67
Plantas no vasculares	8	1,33
Plantas vasculares	224	37,33
Reptiles	33	5,50

[5] Las especies no incluidas en las Directivas europeas, pero incluidas en el LESRPE o CEEA cuya distribución no sea exclusiva del territorio nacional, no se contemplan en el estudio.

Tabla 2. Valor asignado a las especies de estudio, atendiendo a la categoría de amenaza a escala nacional según la UICN.

Abreviatura	Categoría	Valor
CR	En peligro crítico	6
EN	En peligro	5
VU	Vulnerable	4
NT	Casi amenazado	3
LC	Preocupación menor	2
DD	Datos insuficientes	1

b) Papel ecosistémico

Se ha obtenido por criterio experto y mediante revisión bibliográfica realizada por especialistas en fauna y flora. La asignación de estos valores se ha llevado a cabo clasificando las especies en tres grupos:

i. Especies ingenieras (valor de la variable = 3)

Especies cuya dinámica afecta a los flujos de materia y energía del ecosistema. El resto de organismos dependen de ellas. Las especies ingenieras modulan directa o indirectamente la disponibilidad de recursos a otras especies al provocar cambios de estado físico en materiales biótico o abióticos; al hacerlo, modifican, mantienen y crean hábitats (Jones et al. 1994, 1997).

ii. Especies clave (valor de la variable = 2)

Son aquellas especies de depredadores o herbívoros que determinan la diversidad y abundancia de otras especies por su influencia en las redes tróficas. También se incluyen los dispersantes de semillas y las especies facilitadoras para el reclutamiento de las especies dominantes en el sistema. Este hecho les otorga un papel en los sistemas naturales especialmente relevante, más allá de su abundancia, con lo que su seguimiento puede proporcionar información clave sobre dichos sistemas.

El concepto de especie clave (Daily et al. 1993, Krebs 1985, Paine 1969) se basa en los efectos netos de una especie en la comunidad en función de las diferentes interacciones tróficas y la competencia por los recursos.

iii. Otras especies (valor de la variable = 1)

c) Disponibilidad y calidad de la información

Esta variable toma valores entre 4 y 1, tal como se describe a continuación:

- Valor 4: Información de muy buena calidad que se actualiza mediante seguimientos periódicos.
- **Valor 3**: Hay datos cuantitativos sobre la especie, pero no cumple las condiciones del valor 4.
- **Valor 2**: Solo hay datos cualitativos sobre la especie.
- **Valor 1**: No hay información disponible.

Para la asignación de esta variable se ha utilizado la información disponible en la base de datos de EIDOS⁶ sobre las poblaciones de cada especie y sobre la fuente de procedencia de la misma.

3) Representación espacial del Índice de Biodiversidad

La representación espacial del Índice de Biodiversidad (IB) se ha llevado a cabo a partir del área de distribución de las especies seleccionadas. Para ello, se ha identificado su ubicación en una malla de cuadrículas UTM de 10 x 10 km⁷. La información sobre la distribución espacial de las especies se ha obtenido mediante consulta en la base de datos de EIDOS, considerando las siguientes fuentes: a) Inventario Español de Especies Terrestres (IEET), b) Atlas y Libro Rojo de la

flora vascular amenazada (AFA), c) Plantas ligadas al agua (CEDEX 2017), d) Informe nacional sobre la aplicación de la Directiva Hábitats en España 2013-2018 y e) Informe nacional sobre la aplicación de la Directiva Hábitats en España 2013-2018. El valor del índice se obtuvo como la suma de los valores calculados para todas las especies presentes en cada cuadrícula UTM de 10 x 10 km.

Con el fin de disponer de esta información a mayor detalle, se han calculado modelos que han permitido extrapolar el IB a cuadrículas UTM de 1 x 1 km. Para ello, se ha incluido una serie de variables ambientales que se usan como predictoras de la distribución del IB. Una vez obtenidas las variables ambientales (Tabla 3), se ha evaluado la multicolinealidad de las mismas mediante el factor de inflación de la varianza (VIF, de sus siglas en inglés). Se eliminó secuencialmente la variable con el VIF más alto hasta que el conjunto de variables presentara un VIF menor a 10 (Romero et al. 2015). En la tabla 3 se muestran las variables que han sido seleccionadas por el VIF. Este procedimiento se ha llevado a cabo para cada una de las regiones consideradas, es decir, España peninsular, Baleares, y Canarias.

[6] La base de datos de EIDOS recopila información oficial sobre las especies silvestres presentes en España, a partir de diferentes fuentes como Atlas, Libros Rojos, Catálogos, Inventarios, Informes, etc. La información sobre las poblaciones de las especies en la que se basa la asignación de valores a la variable Disponibilidad y calidad de información está recogida en la tabla: PlinianCore-Extension / Campos: Population Biology Unstructured y Fuente_PopulationBiology

[7] Ministerio para la Transición Ecológica y el Reto Demográfico. Disponible en: https://www.miteco.gob.es/en/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/bdn-cart-aux-descargas-ccaa.aspx

Tabla 3. Variables ambientales candidatas a ser usadas en las modelizaciones del índice de biodiversidad y de especies objetivo. Con una "x" se marcan las variables seleccionadas con el VIF (ver texto) en cada una de las tres regiones consideradas.

Variable	Código	España peninsular	Baleares	Canarias
Altitud media (1)	Alt	Х	Х	
Pendiente (1)	Pend	х	Х	х
Precipitación total anual (2)	Prec			
Precipitación total primavera (2)	Ppri			
Precipitación total verano (2)	Pver	х	Х	х
Precipitación total otoño (2)	Poto		Х	х
Precipitación total invierno (2)	Pinv	х		
Temperatura media anual (2)	Tmed			
Temperatura media de enero (2)	Tene			
Temperatura media de julio (2)	Tjul		Х	х
Rango de temperatura (Tjul – Tene) (2)	RangoT	Х	Х	х
Irradiación solar de superficie (3)	ISS			Х
Porcentaje de superficie forestal (4)	SFor	х	Х	Х
Porcentaje de superficie agrícola (5)	SAgric	х	Х	Х
Porcentaje de superficie urbanizada (5)	SUrb	х	Х	Х
Densidad de población (6)	Pob	х	Х	Х
Latitud	Lat	х	х	Х
Longitud	Long	Х		Х

Fuentes de las variables: (1): US Geological Survey (1996); (2): Agencia Estatal de Meteorología (2011); (3): Sancho et al. (2012); (4): Mapa Forestal de España (MFE50) y Mapa Forestal de España de Máxima Actualidad con fecha de junio de 2020; (5): SIGPAC, cartografía del año 2020; (6): Administrative Centres & Populated Places shapefile at the Relational World Database II (RWDB2) (http://www.fao.org/geonetwork).

Utilizando las variables seleccionadas por el VIF, se ha aplicado un **Modelo Lineal Generalizado** (GLM) mediante pasos sucesivos. Inicialmente, los modelos fueron ajustados a una distribución de Poisson; sin embargo, debido a que los datos mostraban una dispersión mayor de la esperada (Zuur et al., 2013), se realizaron ajustes posteriores utilizando una distribución binomial negativa. De esta manera, se ha obtenido un modelo de biodiversidad para cada una de las regiones. Se pueden consultar las variables seleccionadas en los distintos modelos y sus respectivos coeficientes en la tabla 4.

Finalmente, el **Índice de Biodiversidad** a una resolución de 10 x 10 km ha sido ex-

trapolado a una escala de 1 x 1 km, aprovechando la disponibilidad de variables a esa resolución (Barbosa et al., 2003). Se han eliminado los valores atípicos o muy extremos (outliers) mediante el establecimiento del límite siguiente calculado sobre los valores esperados del modelo a 100 km²:

Media ± 3,5 x desviación estándar

Este límite se ha aplicado a los valores del modelo proyectado a 1 km². El resultado se ha reescalado linealmente entre 0 y 50. La cartografía resultante se presenta en la figura 8.

Tabla 4. Modelos del índice de biodiversidad en las distintas regiones consideradas (Código de las variables se presentan en la tabla 3)

Región	Modelo (IB)
España Peninsular	3.42 - (0.343*SAgric) - (0.0341*Long) + (0.0356*RangoT) + (0.0332*Lat) - (0.000154*Alt) + (0.0136*Pend) - (0.156*SFor) - (0.000162*Pinv)
Islas Baleares	4.09 + (0.228*Lat) - (0.048*Pend) - (0.289*Tjul)
Islas Canarias	14.1 - (0.263*Lat) - (0.328*ISS) + (0.0727*RangoT) - (0.75*SUrb) + (0.000106*Pob) + (0.0109*Pver)

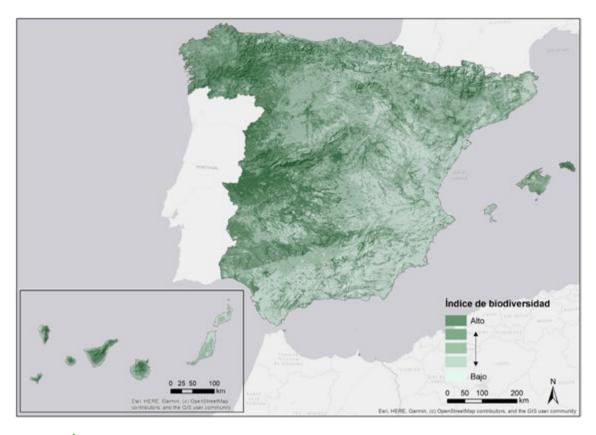
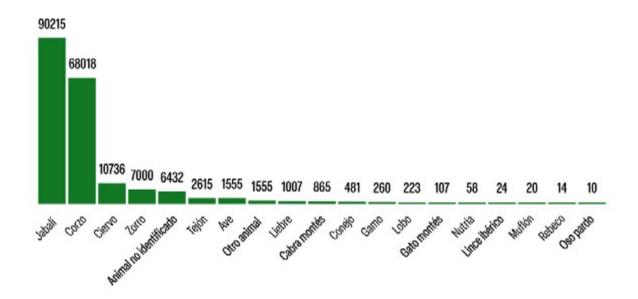


Figura 8. Índice de biodiversidad en cuadrículas UTM de 1x 1 km.

2.1.1.3 Índice de riqueza de especies objetivo (REO)

Las especies objetivo (definidas también como especies "focales"; véase documento 4 de esta serie, MARM 2010⁸) son especies de referencia para la evaluación y priorización de áreas afectadas por la fragmentación de hábitats causada por las ILT y, en particular, para la elección de los puntos que requieren actuaciones de desfragmentación. Se trata de especies especialmente sensibles a la fragmentación de sus hábitats, especies con altas tasas de atropello y/o aquellas causantes de accidentes por colisión con vehículos.

Las especies seleccionadas como **especies objetivo** cumplen siempre varios de los siguientes **criterios**:


- Requieren extensas áreas de campeo.
- Se ven afectadas por el efecto barrera de las vías de transporte.
- Sus áreas de distribución solapan con la red viaria de gran capacidad.
- Amenazadas y altamente vulnerables a la mortalidad por atropello.
- Causantes de accidentes en carreteras, con el consiguiente incre-

[8] https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/temas/ecosiste-mas-y-conectividad/4_indicadores_fragmentac_habitat_tcm30-195795.pdf

mento del riesgo para la seguridad vial.

- Con áreas de distribución en expansión, con el consiguiente incremento asociado de la siniestralidad.
- Están asociadas a siniestralidad en carreteras y/o a altas tasas de atropello y están incluidas en alguno de los listados de especies prioritarias de la UE (Anexos II, IV y V de las Directivas europeas).
- Están asociadas a una elevada tasa de atropellos y presentan algún grado de endemicidad a escala nacional.

La actualización del listado de especies objetivo se ha realizado teniendo en cuenta la mejor información disponible y, de acuerdo con los requerimientos del proyecto, en base a las versiones actualizadas de las bases de datos de ARENA29 y del proyecto SAFE10. La primera integra un total de 190.795 registros de accidentes con fauna silvestre entre los años 2012 y 2021 (Figura 9), mientras que la segunda, recopila 729 registros de atropellos entre los años 2020 y 2022 (Figura 10).

Figura 9. Número de accidentes en los que intervinieron especies de fauna silvestre entre los años de 2012-2021. Fuente: BBDD ARENA2 (Dirección General de Tráfico - DGT).

[9] Información proporcionada por la Dirección General de Tráfico, referente al período 2012-2021.

[10] Proyecto SAFE – Stop Atropellos de Fauna en España. Información referente al período de 2020-2022. https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/conectividad-fragmentacion-de-habitats-y-restauracion/safe_stop_atropellos_fauna.html

Figura 10. Proporción de atropellos según grupo faunístico entre los años 2020-2022.

Fuente: BBDD Proyecto SAFE (Datos parciales hasta 2022).

A diferencia de los análisis realizados en la PT6-2013, en este trabajo se han incluido los anfibios en el listado de especies objetivo debido a las altas tasas de atropello registradas en la base de datos del proyecto SAFE, a los cambios en el esta-

tus de conservación de muchas especies y a la mejora en el conocimiento de sus áreas de distribución. Finalmente, se han considerado un total de 58 especies objetivo que se enumeran en la tabla 5.

Tabla 5. Listado actualizado de especies objetivo (*Especies objetivo no consideradas en la PT6-2013).

Clase	Nombre común	Nombre científico
	Camaleón	Chamaeleo chamaeleon
	Culebra lisa europea	Coronella austriaca
	Culebra lisa meridional	Coronella girondica
	Culebra bastarda	Malpolon monspessulanus
	Culebra viperina	Natrix maura
	Culebra de collar	Natrix natrix
	Víbora áspid	Vipera aspis
	Víbora hocicuda	Vipera latastei
S	Víbora de Seoane	Vipera seoanei
Reptiles	Culebra de herradura	Hemorrhois hippocrepis
Re	Culebra verdiamarilla	Hierophis viridiflavus
	Culebra de Esculapio	Zamenis longissimus
	Culebra de escalera	Rhinechis scalaris
	Culebra de cogulla	Macroprotodon brevis
	Lagartija colilarga	Psammodromus algirus*
	Lagartija colirroja	Acanthodactylus erythrurus*
	Salamanquesa común	Tarentola mauritanica*
	Lagarto ocelado	Timon lepidus*
	Lagarto atlántico	Gallotia atlantica*
	Avutarda	Otis tarda
	Ratonero	Buteo buteo
	Cernícalo vulgar	Falco tinnunculus
	Lechuza	Tyto alba
s S	Mochuelo	Athene noctua
Aves	Cárabo común	Strix aluco*
	Gorrión común	Passer domesticus*
	Curruca cabecinegra	Curruca melanocephala*
	Mosquitero común	Phylloscopus collybita*
	Bisbita caminero	Anthus berthelotii*

Clase	Nombre común	Nombre científico
	Erizo europeo	Erinaceus europaeus
	Erizo moruno	Atelerix algirus
	Lobo	Canis lupus
	Visón europeo	Mustela lutreola
	Turón	Mustela putorius
	Tejón	Meles meles
	Nutria	Lutra lutra
	Oso pardo	Ursus arctos
	Lince ibérico	Lynx pardinus
	Jabalí	Sus scrofa
တ္တ	Ciervo	Cervus elaphus
Mamíferos	Gamo	Dama dama
lamí	Corzo	Capreolus capreolus
2	Topillo de Cabrera	Microtus cabrerae
	Ratón moruno	Mus spretus*
	Conejo común	Oryctolagus cuniculus*
	Zorro	Vulpes vulpes*
	Liebre ibérica	Lepus granatensis*
	Meloncillo	Herpestes ichneumon*
	Gineta	Genetta genetta*
	Gato montés	Felis silvestris*
	Cabra montés	Capra pyrenaica*
	Muflón	Ovis musimon*
	Rebeco	Rupicapra rupicapra*
	Sapo corredor	Epidalea calamita*
so	Sapo común	Bufo spinosus*
Anfibios	Sapo de espuelas	Pelobates cultripes*
Ā	Gallipato	Pleurodeles waltl*
	Salamandra común	Salamandra salamandra*

Para el cálculo del REO se ha partido de la información binaria de distribución de cada una de las especies objetivo en mallas de cuadrículas de 10 x 10 km. A las cuadrículas con presencia de dichas especies se han asignado valores de vulnerabilidad según el grado de amenaza de la especie implicada (Tabla 2). Así, cada especie tiene el valor de vulnerabilidad en las cuadrículas donde esté presente. El índice se ha obtenido aplicando la siquiente fórmula:

$$REO = \sum_{i=1}^{n} V_{ij}$$

Donde n es el número total de especies consideradas y V_{ij} es el valor de vulnerabilidad de cada especie i en cada cuadrícula j. Finalmente, el valor de cada cuadrícula es la suma de los valores de vulnerabilidad de las especies presentes en ella.

Una vez obtenido el valor del REO para la malla de cuadrículas UTM de 10 x 10 km, estos se han extrapolado a una resolución de cuadrículas UTM de 1 x 1 km. Para ello se han calculado 3 modelos numéricos (correspondientes a la España peninsular, a las islas Baleares y Canarias) mediante Regresión Lineal Múltiple por pasos. Los procedimientos para el cálculo de los modelos, extrapolación de valores, tratamiento de los outliers y el reescalado a 0-50 han sido análogos a los descritos para el cálculo y representación espacial del IB (epígrafe 2.1.1.2). Los modelos calculados se recogen en la tabla 6, mientas que la expresión cartográfica del REO se presenta en la figura 11.

Tabla 6. Modelos del índice de riqueza de especies objetivo (REO) en las distintas regiones consideradas. (Código de las variables se presentan en la tabla 3)

Región	Modelo (REO)
España Peninsular	2.86 - (0.162*SAgric) + (0.0254*RangoT) - (0.0000724*Alt) + (0.00705*Pend) - (0.000981*Pver) + (0.000341*Pinv) + (0.398*SUrb) + (0.179*SFor) + (0.0115*Long) + (0.0111*Lat)
Islas Baleares	-0.147 + (0.572*SAgric) - (0.186*Tjul) - (0.00437*Poto) + (0.577*Lat) + (0.00167*Alt) - (0.0181*Pend)
Islas Canarias	22.4 - (0.0158*Pend) - (0.577*SUrb) - (0.397*ISS) + (0.000167*Pob) - (0.403*Lat) + (0.864*SFor) + (0.229*Long) - (0.158*Tjul) + (0.659*SAgric)

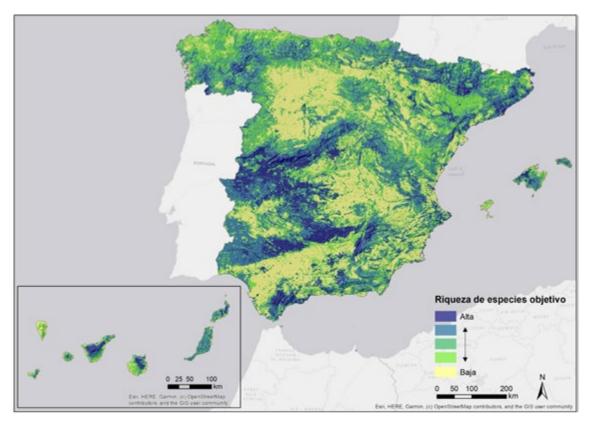


Figura 11. Índice de riqueza de especies objetivo (REO).

2.1.1.4 Índice de abundancia de ríos y humedales (RH)

Este índice ha sido considerado para abordar la problemática específica relacionada con las infraestructuras viarias que atraviesan ríos y humedales o sus proximidades. También se ha utilizado para otorgar importancia a grupos zoológicos particularmente afectados por problemas de atropellos, cuya distribución y abundancia están asociadas total o parcialmente a entornos acuáticos, como anfibios, ofidios o quirópteros. Se han incluido tanto ríos y humedales permanen-

tes como temporales, característicos de los ambientes mediterráneos.

El RH se ha obtenido mediante el cálculo del porcentaje de cobertura de ríos y humedales en cuadrículas de 1 km². La información de partida se ha obtenido del SIOSE¹¹ y de la Base Topográfica Nacional (BTN), ambas fuentes disponibles en la web del Instituto Geográfico Nacional y descargadas en julio de 2022.

Del SIOSE se han elegido como coberturas de agua las zonas pantanosas, lagos y lagunas, embalses, turberas, marismas,

[11] Sistema de Ocupación del Suelo en España (SIOSE) 2014

lagunas costeras y estuarios. De la BTN se han tomado los ríos de España¹². Se han considerado ocho ríos principales¹³: Guadalquivir, Tajo, Ebro, Miño, Segura, Guadiana, Duero y el Júcar.

Se ha aplicado un área de influencia (buffer) de 5 metros a la capa de coberturas de agua, un buffer de 50 metros a cada

lado de la capa de los ríos principales y un *buffer* de 10 metros a cada lado al resto de los ríos. Después de combinar las tres capas, se ha calculado el porcentaje de superficie de agua en cada cuadrícula. Estos valores se han reescalado en un rango de 0 a 50 y se han representado cartográficamente (Figura 12).

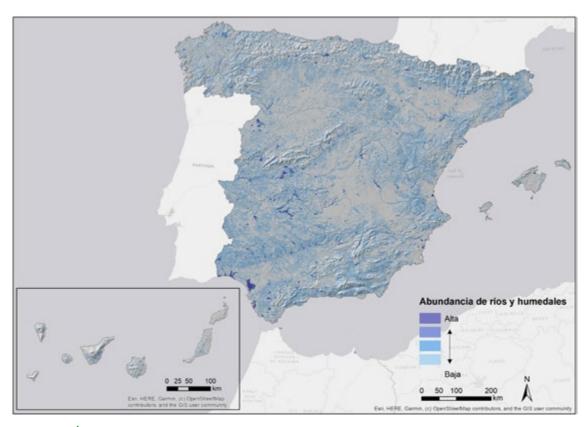


Figura 12. Índice de abundancia de ríos y humedales.

[12] Con el fin de evitar una percepción equivocada de una excesiva presencia de hidrografía en áreas donde hay numerosos arroyos o barrancos, en los análisis se han tomado en cuenta los cursos de agua con topónimos en el MTN, excluyendo aquellos cuya longitud fuera inferior a 500 metros y que no contaran con un nombre asociado.

[13] Según longitud e importancia respecto al conjunto de ríos de España.

2.1.1.5 Índice de áreas naturales protegidas (ANP)

Este índice refleja el valor del territorio en función de la distribución de 7 categorías de áreas naturales protegidas: a) Parque Nacional, b) Parque Natural, c) Lugares de Interés Comunitario (LIC, Red Natura 2000), d) Zona de Especial Protección para las Aves (ZEPA, Red Natura 2000), e) Humedales RAMSAR, f) Reservas de la Biosfera y, g) Otros Espacios Naturales Protegidos (ENP). En la tabla 7 pueden consultarse las direcciones de descarga y las fechas de actualización de las capas utilizadas en los análisis.

Tabla 7. Figuras de protección consideradas en el cálculo del índice de áreas naturales protegidas, dirección de descarga y fecha de actualización de las capas.

Figura de protección	Fuente de información cartográfica	Fecha de Actualización de la capa
Parque Nacional Parque Natural Otras figuras de protección	https://www.miteco.gob.es/es/biodiversidad/ servicios/banco-datos-naturaleza/informa- cion-disponible/enp_descargas.html	07/2021
LIC ZEPA	https://www.miteco.gob.es/es/cartogra- fia-y-sig/ide/descargas/biodiversidad/rn2000. aspx	12/2021
Humedales RAMSAR	https://www.miteco.gob.es/es/cartogra- fia-y-sig/ide/descargas/biodiversidad/hume- dales-ramsar.aspx	05/2021
Reserva de la Biosfera	https://www.miteco.gob.es/es/biodiversidad/ servicios/banco-datos-naturaleza/informa- cion-disponible/mab_descargas.html	12/2021

Las capas vectoriales de las áreas protegidas han sido convertidas en formato ráster con resolución espacial de 1 km², generando información binaria (presencia: 1 o ausencia: 0) para cada una de las categorías contempladas.

Finalmente, se ha calculado el ANP mediante la suma ponderada de los rásters obtenidos. Los factores de ponderación se asignaron según objetivos generales de gestión y el grado de restricción de las diferentes figuras de protección (EURO-PARC, 2008; UICN, 2008) como se detalla en la tabla 8.

Como resultado se han obtenido valores entre 0 y 10 en cada una de las cuadrículas de 1km², que finalmente se han reescalado entre 0 y 50 y cartografiado (Figura 13).

Tabla 8. Factores de ponderación asignados a las figuras de protección consideradas para el cálculo del índice de presencia de áreas naturales protegidas.

Figura de protección	Factor de ponderación
Parque Nacional	3
Parque Natural LIC ZEPA Humedales RAMSAR	2
Otras figuras de protección	1

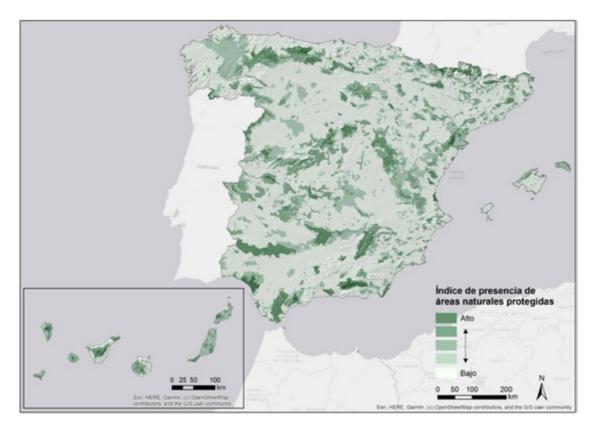


Figura 13. índice de presencia de áreas naturales protegidas.

2.1.1.6 Índice de importancia para la conectividad ecológica (ICE)

Este índice es un indicador de la superficie que ocupan los corredores ecológicos modelizados para 12 ecoperfiles¹⁴ dentro de cada cuadrícula UTM de 1 km², expresado como el porcentaje de la superficie total de la cuadrícula.

Como cartografía de partida se ha utiliza-

do la malla de cuadrículas de 1 x 1 km de la España peninsular y el trazado de los corredores ecológicos identificados en el marco del "Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica" (MITECO, 2023). En dicho trabajo, la conectividad se modelizó a escala peninsular y mediante un enfoque funcional, que permitió identificar en base a superficies de resistencia¹⁵, las rutas de movimiento de menor

[14] Grupos de especies que comparten similares requisitos de hábitat para su dispersión y sensibilidad a la fragmentación.

[15] Superficies que caracterizan el grado de permeabilidad de la matriz territorial atendiendo a la dificultad –relacionada con el coste energético y el riesgo de mortalidad- que imponen los elementos y características del paisaje al movimiento de las especies. En este trabajo se han establecido en base a la función inversa de mapas continuos de favorabilidad a la presencia de las especies focales en el territorio.

coste entre pares de teselas de hábitats con núcleos de población de especies focales 16, representativas de los 12 ecoperfiles antes mencionados (Anexo II; Tabla II.1). Como resultado se obtuvieron 12 conjuntos de corredores ecológicos, es decir, rutas potenciales de desplazamiento para la totalidad de especies consideradas bajo los ecoperfiles. Paralelamente se han calculado índices de probabilidad de conectividad y disponibilidad de hábitat (Saura y Pascual-Hortal 2007, Saura y Torné 2009) que han permitido valorar individualmente y categorizar cada uno de los corredores identificados, considerando escenarios de conservación y restauración. En el Anexo II se puede consultar la descripción de los ecoperfiles, sus especies focales y el resumen extendido del análisis de conectividad ecológica.

En esta etapa del procedimiento, se ha tomado como información de partida el trazado de los corredores que han resultado prioritarios¹⁷ para cada uno de los ecoperfiles en el escenario de conservación (Anexo II; Figura II.1).

Para el cálculo de la superficie ocupada por los corredores en las cuadrículas de 1 km² ha sido necesario establecer una anchura mínima suficiente para que estos pudieran funcionar como corredor para la mayoría de especies presentes en el territorio español.

Aunque existen numerosos estudios, con diferentes aproximaciones, con la finalidad de identificar corredores ecológicos, pocos han abordado explícitamente la cuestión relativa al ancho óptimo que deben tener dichos corredores para que cumplan sus objetivos de conservación (Beier 2019, Ford et al. 2020). Los estudios son aún más escasos si se consideran trabajos a grandes escalas (Beier 2019). La anchura del corredor parece ser, por tanto, uno de los aspectos menos considerado en el diseño de corredores ecológicos (Beier, et al. 2008, Gregory y Beier 2014), encontrándose en la literatura especializada valores mínimos que varían entre 30 m (Bentrup 2008) y 2 km (Beier 2019).

No existen pues, parámetros preestablecidos de diseño de estas zonas conectoras. La adopción de la estrategia correcta depende de muchos factores que incluven los requisitos de las especies, la longitud del corredor, el contexto geográfico, la calidad y continuidad del hábitat dentro del corredor, las presiones humanas en el entorno, etc. (Bentrup 2008, Brudvig et al. 2017). Si bien no existen reglas de aplicación universal que definan el ancho óptimo de los corredores ecológicos, parece existir un consenso en que corredores demasiado estrechos pueden ser poco funcionales para especies con grandes masas corporales y requerimientos espaciales, o para aquellas especies que puedan estar afectadas por el efecto de borde (Bentrup 2008, Saura et al. 2016). Por otro lado, los tramos más estrechos de los corredores corresponderían a zonas más frágiles para la conectividad: cualquier deterioro en el corredor por cam-

[16] Especies representativas de los ecoperfiles y para las cuales se realizaron los análisis de conectividad.

[17] Se han considerados como prioritarios el 10% de corredores con mayores valores de índice de probabilidad de conectividad.

bios de usos del suelo u otros motivos, incluso de pequeña extensión, podrían comprometer más seriamente su funcionalidad ecológica.

Con estas limitaciones, el índice de importancia para la conectividad se ha cal-

culado como, el porcentaje de cobertura de los corredores ecológicos seleccionados, considerando una zona de influencia de 500 m a cada lado de dichos corredores. Una vez calculado, el valor del índice, se reescaló a valores entre 0 y 50 y se cartografió (Figura 14).

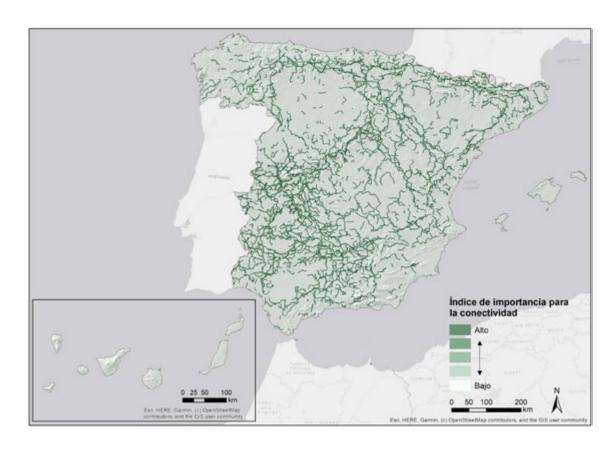


Figura 14. Índice de importancia para la conectividad ecológica en la España peninsular.

2.1.2 Tamaño efectivo de malla - TEM

El tamaño efectivo de malla es un índice de cuantificación de fragmentación del paisaje. Parte de considerar cuál es la probabilidad de que dos puntos de un territorio escogidos al azar no gueden separados entre sí por ninguna infraestructura de transporte. Aplicada a la fauna, esta probabilidad es la de que dos individuos situados al azar pudiesen encontrarse sin necesidad de atravesar ninguna infraestructura. Se pasa de dicha probabilidad a valor de área multiplicando por la superficie total del territorio considerado. El resultado es el tamaño efectivo de malla, expresado en unidades de área. El indicador varía inversamente con la fragmentación: mayor tamaño efectivo de malla corresponde a menor fragmentación y viceversa.

Como cartografía de partida se ha utilizado un mapa de usos del suelo, el trazado de las infraestructuras de transporte y un mapa del territorio considerado dividido en cuadrículas UTM de 1 km2. Para el cálculo del TEM se han clasificado los usos del suelo de forma binaria, diferenciando la totalidad de usos del suelo entre hábitat disponible y no disponible. Las coberturas consideradas como hábitat disponible se especifican en la tabla 9. Por su parte, los usos considerados como hábitat no disponible para la fauna (elementos fragmentadores del paisaje), las infraestructuras de transporte, así como las áreas de influencia (buffers) aplicadas a las mismas, se especifican en la tabla 10. Tan solo se han considerado como fragmentadores los tramos de carretera y vías de ferrocarril superficiales y elevados. Los tramos que discurren por túnel no se han considerado porque se asume que no fragmentan los hábitats, ya que los atraviesan bajo tierra.

Como base cartográfica de tipos de usos del suelo se ha utilizado *CORINE Land Cover (CLC)* de 2018¹⁸, mientras que para el trazado de las infraestructuras, se ha utilizado la Base Cartográfica Nacional¹⁹ a escala 1:200.000 (BCN200). Ambas cartografías se descargaron en agosto de 2022.

[18] https://land.copernicus.eu/en/products/corine-land-cover

[19] https://centrodedescargas.cnig.es/CentroDescargas/index.jsp

Tabla 9. Usos del suelo considerados como hábitat disponible para la fauna.

Código Corine Land Cover	Descripción
211	Tierras de labor en secano
212	Terrenos regados permanentemente
213	Arrozales
221	Viñedos
222	Frutales
223	Olivares
231	Praderas
241	Cultivos anuales asociados con cultivos permanentes
242	Mosaico de cultivos
243	Terrenos principalmente agrícolas, pero con importantes espacios de vegetación natural
244	Sistemas agroforestales
311	Bosques de frondosas
312	Bosques de coníferas
313	Bosque mixto
321	Pastizales naturales
322	Landas y matorrales
323	Vegetación esclerófila
324	Matorral boscoso de transición
331	Playas, dunas y arenales
332	Roquedo
333	Espacios con vegetación escasa
334	Zonas quemadas
335	Glaciares y nieves permanentes
411	Humedales y zonas pantanosas
412	Turberas
421	Marismas
423	Zonas Ilanas intermareales
511	Cursos de agua
521	Lagunas costeras
522	Estuarios

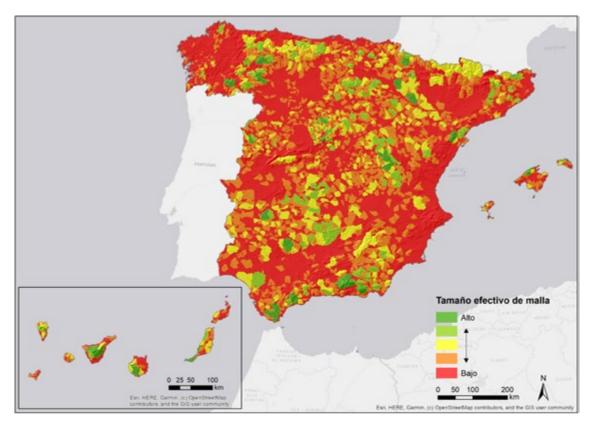
Tabla 10. Usos del suelo fragmentadores del paisaje y tipos de vías de transporte, junto con las áreas de influencia (*buffer*) aplicadas a las mismas (una banda a cada lado de la vía), para calcular el tamaño efectivo de malla.

Elementos fragmentadores del paisaje			
Corine Land Cover		Reclasificación de vías en BCN200	
Código	Descripción	Tipo de vía	Área de influencia (m)
111	Tejido urbano continuo	Autopista y autovías	2 x 15
112	Tejido urbano discontinuo	Carreteras nacionales y auto- nómicas de primer orden	2 x 10
121	Zonas industriales o comercia- les	Carreteras autonómicas de segundo orden	2 x 7.5
122	Redes viarias, ferroviarias y te- rrenos asociados	Carreteras autonómicas de tercer orden	2 x 5
123	Zonas portuarias	Líneas de ferrocarril de alta velocidad	2 x 10
124	Aeropuertos	Líneas de ferrocarril conven- cional	2 x 7.5
131	Zonas de extracción minera		
132	Escombreras y vertederos		
133	Zonas en construcción		
141	Zonas verdes urbanas		
142	Instalaciones deportivas y re- creativas		
422	Salinas		
512	Láminas de agua		

La fórmula para calcular el TEM es:

$$m_{eff} = \frac{1}{A_{total}} \sum_{i=1}^{n} A_i^2$$

Siendo $m_{\rm eff}$ el tamaño efectivo de malla, n el número de teselas de hábitat, A_i el área de la tesela i y $A_{\rm total}$ es el área total del territorio considerado. La fórmula ha sido aplicada solo a los tipos de hábitats naturales o seminaturales (incluyendo los agrícolas), excluyendo las áreas urbanas y las teselas constituidas por las propias infraestructuras (Tabla 10).


Si las teselas que quedan cortadas por las fronteras de la unidad (por ejemplo, las cuadrículas de 1 x 1 km) se utilizan directamente tras dicho corte, el tamaño real de la tesela se subestima, resultando en una reducción incorrecta del tamaño efectivo de la malla. Para abordar este problema, se implementó el método descrito por Moser et al. (2007) conocido como conexiones transfronterizas (cross-boundary connections), que elimina el sesgo generado por las fronteras. Este procedimiento considera todas las teselas que se encuentran total o parcialmente dentro de la unidad de estudio y se basa en la probabilidad de que al seleccionar un punto al azar dentro de la unidad considerada (por ejemplo, una cuadrícula de 1 km x 1 km), un segundo punto al azar esté ubicado dentro de la misma tesela completa (aunque el segundo punto quede fuera de la unidad), siendo, por lo tanto, accesible desde el primero sin atravesar ninguna infraestructura. La fórmula resultante es:

$$m_{ef}^{fCBC}(j) = \frac{1}{A_{tj}} \sum_{i=1}^{n} A_{ij} \cdot A_{ij}^{cmpl}$$

Donde m_{eff}^{CBC} es el TEM teniendo en cuenta las conexiones transfronterizas, n es el número total de teselas que intersectan la unidad j, A_{ij} es el área total de la unidad j, A_{ij} es el área de la tesela i dentro de la unidad j, y A_{ij}^{cmples} el área completa de la tesela i incluyendo el área que pudiera quedar más allá de la frontera de la unidad j.

Para el presente trabajo se ha calculado el TEM según esta última fórmula. El cálculo se ha llevado a cabo mediante el complemento "FragScape v2.03" de QGIS.

Una vez obtenido, el valor de TEM_{CBC}, este se ha reescalado entre 0 y 50 y cartografiado (Figura 15).

Figura 15. Cartografía del índice Tamaño Efectivo de Malla - TEM (Jaeger 2000, Moser et al., 2007). Altos valores de tamaño efectivo de malla indican un bajo grado de fragmentación.

2.1.3 Índice de densidad de infraestructuras lineales de transporte

Este indicador muestra la superficie que ocupan las infraestructuras de transporte dentro de la unidad territorial considerada (en este caso cuadrícula), expresada como porcentaje de la superficie total de la unidad. Para el cálculo de este índice se ha partido de la malla de cuadrículas de 1 x 1 km de todo el territorio y el trazado de las vías de transporte con su correspondiente área de influencia tal y como se indica en la Tabla 10. La información cartográfica del trazado de las vías es la correspondiente al "tema 06 – vías de comunicación" de la BCN200.

Una vez calculado el porcentaje de superficie de las infraestructuras de transporte en cada cuadrícula, se ha reescalado a valores entre 0 y 50 y cartografiado (Figura 16). El índice muestra valores máximos en el entorno de las grandes urbes y corredores de transporte principales. El 34,51% de las cuadrículas tienen densidad de vías de transporte superior a 0, es decir, contienen al menos algún tramo de carretera o vía de ferrocarril.

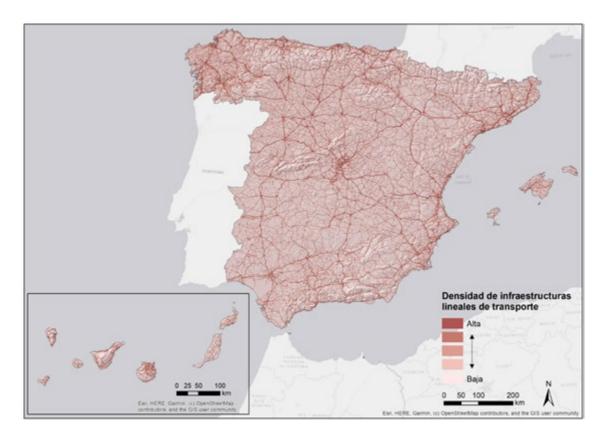


Figura 16. Densidad de la red de infraestructuras lineales de transporte.

2.2 Índices de importancia para la mitigación de los efectos de las vías de transporte

Una vez calculados los índices de base (vulnerabilidad biológica, tamaño efectivo de malla y densidad de infraestructuras de transporte), estos se han integrado en dos modelos cuyos resultados permiten mesurar la importancia de cada cuadrícula del territorio para acciones de desfragmentación, considerando dos escenarios distintos: a) áreas con patrimonio natural poco fragmentado y b) áreas con patrimonio natural muy fragmentado.

Este planteamiento pretende **centrar** las acciones de desfragmentación por un lado, en zonas donde la densidad de vías de transporte es mayor, en particular, cuando afectan a áreas que aún sufren poca fragmentación y tienen altos valores de vulnerabilidad a esta problemática (escenario "a") y por otro, en áreas muy fragmentadas que mantienen ciertas zonas de elevada vulnerabilidad biológica, para mitigar, en lo posible, su degradación (escenario "b").

Índices de importancia para Mitigación de efectos

de vías de transporte

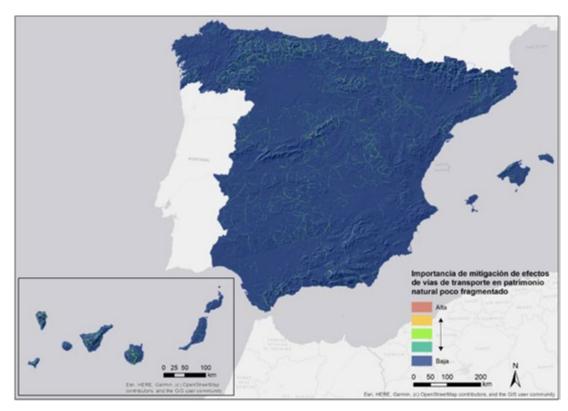
a) Áreas con Patrimonio Natural Poco Fragmentado

Vulnerabilidad biológica × (Densidad de vías de transporte)² × Tamaño efectivo de malla

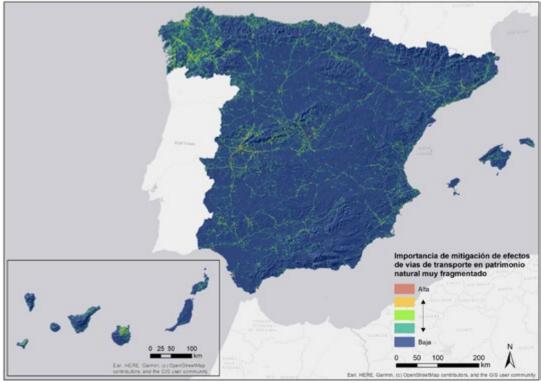
b) Áreas con Patrimonio Natural Muy Fragmentado

(Vulnerabilidad biológica)² × (Densidad de vías de transporte) / Tamaño efectivo de malla + 1

Figura 17. Integración de índices de base y cálculo de índices de importancia para mitigación de los efectos de las vías de transporte sobre la biodiversidad considerando dos escenarios: a) Áreas con patrimonio natural poco fragmentado y b) Áreas con patrimonio natural muy fragmentado.


De esta forma, mediante el **índice de patrimonio natural poco fragmentado** se identifican en áreas con bajo grado de fragmentación y alta vulnerabilidad biológica, aquellas cuadrículas con mayor densidad de infraestructuras. Por el contrario, mediante el **índice de patrimonio natural muy fragmentado** se identifican en áreas con alto grado de fragmentación y alta densidad de infraestructuras, aquellas áreas con valores de vulnerabilidad particularmente altos.

Una vez calculados, ambos índices se han reescalado entre 0 y 50. Dado que los resultados obtenidos en la PT6-2013 mostraron que el índice de importancia de mitigación en áreas de patrimonio natural muy fragmentado²⁰ puede identificar como prioritarias áreas fuertemente


urbanizadas, en el presente trabajo solo se han considerado como importantes aquellas cuadrículas con menos del 60% de su superficie urbanizada.

La representación cartográfica del índice de importancia para mitigación de efectos de vías de transporte en zonas con patrimonio natural poco fragmentado se presenta en la figura 18. Su homólogo para zonas con patrimonio natural muy fragmentado se muestra en la figura 19.

[20] En la PT6-2013 se denomina "Índice de prioridad de mitigación en áreas de patrimonio natural muy fragmentado"

Figura 18. Cartografía del índice de importancia para mitigación de los efectos de las vías de transporte en áreas de patrimonio natural poco fragmentado, calculado según se muestra en la figura 17a.

Figura 19. Cartografía del índice de importancia para mitigación de los efectos de las vías de trasporte en áreas de patrimonio natural muy fragmentado, calculado según se muestra en la figura 17b.

Los modelos previamente presentados permiten asignar a cada cuadrícula UTM de 1 km² los valores de los dos índices. En la mayoría de estas cuadrículas, los valores son nulos, ya que no contienen infraestructuras viales de las tipologías incluidas en la capa utilizada para el análisis, BCN200 (consulte la Tabla 10). Los valores también pueden ser bajos, ya que se buscaba generar índices con una distribución de frecuencias sesgada. Esto permitiría seleccionar con mayor confianza un conjunto limitado de cuadrículas con valores altos que representen el conjunto de áreas a desfragmentar a nivel estatal.

En la Tabla 11 se presentan los valores medios y desviaciones típicas de los dos índices obtenidos.

2.2.1 Identificación de cuadrículas importantes a desfragmentar a nivel estatal

A partir del análisis del territorio desde una perspectiva global, se han seleccionado para cada uno de los índices calculados en el <u>epígrafe 2.2</u>, las 5.000 cuadrículas con valores más altos siguiendo el

mismo criterio planteado en la PT6-2013. Dichas cuadrículas se han denominado:

- a) Cuadrículas importantes a desfragmentar a nivel estatal en áreas de patrimonio natural poco fragmentado (CI-PNPF) y,
- b) Cuadrículas importantes a desfragmentar a nivel estatal en áreas de patrimonio natural muy fragmentado (CI-PNMF).

Esta decisión representa un compromiso entre dos requisitos opuestos:

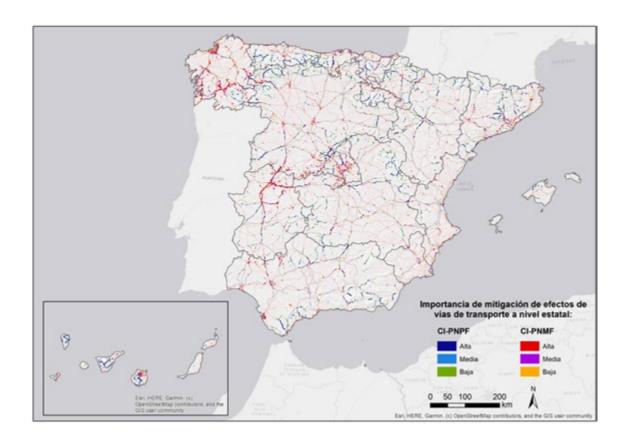

- Identificar un número limitado de áreas para que el proceso de priorización sea realmente eficaz en la práctica
- Puesto que estos índices sólo pueden considerarse una indicación aproximada de la localización de puntos donde realmente se deba actuar, y los modelos pueden tener errores o limitaciones, seleccionar un número suficientemente amplio de cuadrículas.

Tabla 11. Valores medios estándares y desviaciones típicas de los índices de importancia de mitigación de los efectos de las vías de transporte. Los índices han sido reescalados linealmente a valores entre 0-50.

Índice de importancia de mitigación	Media ± desviación estándar
En áreas de patrimonio natural poco fragmentado	0.09 ± 0.48
En áreas de patrimonio natural muy fragmentado	0.32 ± 1.15

En base al valor de cada uno de los índices de importancia para mitigación de los efectos de vías de transporte se han clasificado los dos conjuntos de 5.000 cuadrículas seleccionadas en tres clases de importancia de igual tamaño: 3) alta, 2)

media y 1) baja. La distribución espacial de las cuadrículas resultantes de dicha clasificación se muestra en la figura 20. La proporción de CI-PNPF y CI-PNMF en cada Comunidad Autónoma se presenta en la figura 21.

Figura 20. Mapa de distribución de cuadrículas importantes a desfragmentar a nivel estatal. Se representan las 10.000 cuadrículas con más altos valores de los índices de importancia para mitigación de efectos de vías de transporte en áreas de patrimonio natural poco fragmentado (CI-PNPF) y muy fragmentado (CI-PNMF). Las 5.000 cuadrículas de cada uno de los índices se han categorizado en tres clases de importancia (Alta, media y baja). Los análisis se han llevado a cabo considerando el Estado globalmente.

CCAA	CI-PNPF (%)
Castilla y León	21.14
Andalucía	12.96
Castilla-La Mancha	12.58
Cataluña	9.2
Canarias	6.84
Aragón	6.34
Principado de Asturias	5.88
Extremadura	5.14
Comunidad Foral de Navarra	4.82
Cantabria	3.26
Galicia	3.24
País Vasco	2.72
Comunidad de Madrid	2.52
La Rioja	2.18
Illes Balears	0.68
Comunitat Valenciana	0.28
Región de Murcia	0.22

CCAA	CI-PNMF (%)
Galicia	22.26
Castilla y León	16.18
Extremadura	14.14
Andalucía	9.32
Cataluña	7.3
Castilla-La Mancha	5.64
Comunidad de Madrid	5.22
Comunitat Valenciana	4.12
Aragón	2.9
País Vasco	2.78
Principado de Asturias	2.5
Canarias	2.2
Cantabria	1.98
La Rioja	1.32
Comunidad Foral de Navarra	1.08
Región de Murcia	0.94
Illes Balears	0.12

Figura 21. Proporción de cuadrículas importantes a desfragmentar a nivel estatal en áreas de patrimonio poco fragmentado (CI-PNPF) y muy fragmentado (CI-PNMF) en cada Comunidad Autónoma.

Debido a la marcada diversidad territorial en los componentes de estos índices, se ha observado una variabilidad significativa en la distribución geográfica de las áreas importantes a desfragmentar. Dado que los dos índices reflejan situaciones prácticamente opuestas en términos de grado de fragmentación de hábitats, su distribución ha presentado una divergencia considerable, predominando uno u otro según la región específica. Cabe destacar también el gran desequilibrio observado en el número de cuadrículas con valores altos identificadas en cada territorio, desde zonas con una alta concentración, hasta amplios espacios donde apenas se han identificado cuadrículas con altos valores en estos índices. En consecuencia, la distribución espacial de las cuadrículas con los valores más altos, para cualquiera de los dos índices, es muy heterogénea y muestra grandes diferencias entre las Comunidades Autónomas.

La situación antes descrita refleja la existencia de regiones en las que sería más importante adoptar medidas de desfragmentación y que es esencial poder evaluar el territorio desde un punto de vista global. Por otra parte, dado que las competencias de gestión en materia de medioambiente e infraestructuras de transporte están, en gran parte, transferidas a las Comunidades Autónomas es importante considerar cuales son las prioridades dentro de cada una de ellas, independientemente de su situación en el panorama estatal. Por ello, aunque el análisis se aplica a escala estatal se ha llevado a cabo un ejercicio de evaluación en el ámbito de cada Comunidad Autónoma. Dicho ejercicio permitió atender a las peculiaridades regionales en los tres aspectos básicos considerados en los modelos: la vulnerabilidad del territorio a las infraestructuras lineales de transporte, la fragmentación de hábitats y la densidad de la red de ILT. Además, permitió incorporar información complementaria que aumenta la precisión de los análisis, si bien es importante señalar que éstos deberían ser verificados por las administraciones regionales para confirmar la validez del modelo y afinar la precisión sobre el terreno de las áreas identificadas.

2.2.2 Identificación de cuadrículas importantes a desfragmentar en el ámbito autonómico

Se ha identificado un conjunto de áreas importantes a desfragmentar para cada Comunidad Autónoma, seleccionando el 1% de sus cuadrículas con mayor valor en cada uno de los dos índices calculados. Dichas cuadrículas se han denominado:

- a) Cuadrículas importantes a desfragmentar en el ámbito de las CC.AA. en áreas de patrimonio natural poco fragmentado (CI-PNPF_{CC.AA.}) y,
- b) Cuadrículas importantes a desfragmentar en el ámbito de las CC.AA. en áreas de patrimonio natural muy fragmentado (CI-PNMF_{CC.AA}).

El número total de CI-PNPF_{CC.AA} y CI-PN-MF_{CC.AA} obtenidos fue similar al de las cuadrículas seleccionadas a nivel estatal, concretamente 10.398.

Con este sistema se han generado subconjuntos autonómicos de áreas importantes a desfragmentar con porcentajes equivalentes en cada Comunidad Autónoma, considerando a cada una de ellas de forma independiente y proporcionando un conjunto de cuadrículas en número similar al modelo estatal. Se han distinguido tres categorías de importancia en cada uno de los dos índices, siguiendo el mismo procedimiento que en el caso anterior (véase el epígrafe 2.2.1).

En la tabla 12 se presentan los valores medios y desviaciones típicas de los dos índices de importancia para mitigación de los efectos de vías de transporte en el ámbito de cada Comunidad Autónoma. La cartografía de distribución de las CI-PNPF_{CC. AA.} y CI-PNMF_{CC.AA.} puede consultarse en el epígrafe 2.4.

Tabla 12. Valores medios estándares y desviaciones típicas de los índices de importancia para mitigación de los efectos de las vías de transporte en ámbito autonómico. Los índices han sido reescalados linealmente a valores entre 0-50.

	Índice de importancia para mitigación de efectos de vías de transporte en áreas de:		
CC.AA.	Patrimonio natural poco frag- mentado	Patrimonio natural muy frag- mentado	
	Media ± desviación estándar	Media ± desviación estándar	
Andalucía	0.07 ±0.49	0.18 ± 0.77	
Aragón	0.07 ±0.33	0.15 ± 0.55	
Canarias	0.27 ±1.02	0.34 ± 1.04	
Cantabria	0.19 ±0.78	0.44 ± 1.17	
Castilla-La Mancha	0.08 ±0.36	0.14 ± 0.59	
Castilla y León	0.11 ±0.59	0.26 ± 0.86	
Cataluña/Catalunya	0.11 ±0.66	0.31 ± 0.95	
Comunidad de Madrid	0.14 ±0.82	0.56 ± 1.66	
Comunidad Foral de Navarra	0.16 ±0.57	0.19 ± 0.65	
Comunitat Valenciana	0.02 ± 0.11	0.31 ± 0.94	
Extremadura	0.07 ± 0.30	0.34 ± 1.34	
Galicia	0.08 ± 0.32	0.84 ± 1.57	
Illes Balears	0.09 ± 0.44	0.21 ± 0.50	
La Rioja	0.13 ± 0.55	0.30 ± 0.94	
País Vasco/Euskadi	0.15 ± 0.64	0.45 ± 1.16	
Principado de Asturias	0.17 ± 0.66	0.36 ± 0.95	
Región de Murcia	0.02 ± 0.13	0.17 ± 0.58	

2.3 Identificación de cuadrículas prioritarias y de máxima prioridad a desfragmentar

Las áreas importantes a desfragmentar en ámbito autonómico constan de un número elevado de cuadrículas y, aunque en la cartografía correspondiente se representan tres categorías de importancia en función de los valores de los índices de mitigación de efectos de vías de transporte en cada uno de los escenarios considerados²¹, es deseable acotar más el número de estas áreas. Además, como puede deducirse de la inspección de la cartografía estatal para estos índices (Figura 18 y Figura 19), las cuadrículas con valores altos se agrupan a menudo en tramos largos de las mismas infraestructuras lineales de transporte, y por tanto resulta conveniente usar criterios adicionales para priorizar cuadrículas dentro de estos tramos.

Por otro lado, los índices de importancia para mitigación de los efectos de las vías de transporte, no contemplan información sobre siniestralidad causada por fauna silvestre o sobre posibles zonas críticas para la restauración de la conectividad. Ambos, componentes de sumo interés para ayudar a discriminar las áreas donde priorizar la aplicación de medidas de desfragmentación.

Teniendo en cuenta lo anterior, el procedimiento seguido para el establecimiento de áreas prioritarias y de máxima prioridad para actuaciones de desfragmentación se han considerado tres variables complementarias:

- a) Intersecciones entre red viaria y corredores ecológicos
- b) Densidad de accidentes con fauna silvestre
- c) Intersecciones entre red viaria y vías pecuarias.

La obtención y clasificación de estas variables, así como el desarrollo metodológico de los análisis de coincidencia realizados para el filtrado de cuadrículas se describen en los epígrafes siguientes.

2.3.1 Criterios complementarios

2.3.1.1 Intersecciones entre la red viaria y corredores ecológicos

La fragmentación convierte zonas continuas de hábitat en teselas de tamaño diverso, que quedan situadas a distancias variables entre ellas y eventualmente aisladas. Este proceso afecta negativamente a la conectividad ecológica, definida como el grado en que el territorio facilita los desplazamientos de las especies entre las teselas con recursos (Taylor et al. 1993) y, por tanto, el funcionamiento de los procesos ecológicos a gran escala.

La proliferación de ILT, especialmente las carreteras de alta capacidad y las líneas ferroviarias con vallado perimetral, constituye uno de los principales factores de fragmentación de los ecosistemas. Estas infraestructuras generan un efecto barrera que afecta a un amplio grupo de especies (Mata et al. 2006, Rosell et al. 2003), fragmentando el territorio y dividiéndolo en partes progresivamente más aisladas, con funcionalidad reducida.

[21] Áreas de patrimonio natural muy y poco fragmentado.

La evidencia científica ha demostrado que para alcanzar las metas de conservación de la biodiversidad en el largo plazo y en el contexto del cambio climático, la conectividad ecológica del territorio es fundamental (Foden y Young 2020, Costanza y Terando 2019, Gross et al. 2016, Rudnick et al. 2012). Por otro lado, la Ley 42/2007, de 13 de diciembre, del Patrimonio Natural y de la Biodiversidad, especifica que las Administraciones Públicas preverán, en su planificación ambiental, mecanismos para lograr dicha conectividad, estableciendo o restableciendo corredores ecológicos entre espacios naturales de singular relevancia para la biodiversidad.

Estos corredores, estén o no delimitados oficialmente, pueden estar afectados por las ILT cuando existe una intersección entre ambos, alterando su funcionalidad (Coffin 2007) y dificultando los movimientos de especies que concentran sus desplazamientos a través de estos espacios. Además, la intersección de corredores ecológicos con ILT puede generar puntos críticos de mortalidad por atropello de fauna y tramos de concentración de accidentes causados por colisiones con grandes mamíferos, si estos tramos no cuentan con estructuras adecuadas de permeabilización.

El objetivo del procedimiento que se presenta en este epígrafe es identificar y localizar zonas con posibles conflictos entre la red viaria y los corredores ecológicos identificados para cuatro ecoperfiles de mamíferos terrestres, detectando así, las áreas más importantes para la implementación de acciones de **permeabilización de las ILT** y potenciando la conectividad ecológica del territorio para los ecoperfiles modelizados.

Como cartografía de partida se han utilizado los tramos superficiales de las vías de transporte extraídos de la BCN200²² y el trazado de los corredores modelizados para los ecoperfiles que se describen en la tabla 13, junto a sus respectivas especies focales²³.

[22] https://www.ign.es/web/ign/portal/cbg-area-cartografia

[23] Especies representativas de cada uno de los ecoperfiles y para las que se realizaron los análisis de conectividad

Tabla 13. Ecoperfiles y especies focales considerados en la identificación de intersecciones entre la red viaria y los corredores ecológicos.

Ecoperfil	Descripción	Especie focal (Nombre científico/nombre común)
1Mn	Especies con selección de hábitat generalista y vulnerabilidad media a la fragmentación.	Genetta genetta (Linnaeus, 1758)/ Gineta
2An	Especies con selección de hábitat en mosaico y vulnerabilidad alta a la fragmentación.	Felis silvestris Schreber, 1777 / Gato montés Mustela putorius Linnaeus, 1758 / Turón
2Mn	Especies con selección de hábitat en mosaico y vulnerabilidad media a la fragmentación.	Atelerix algirus (Lereboullet, 1842) / Erizo moruno Herpestes ichneumon (Linnaeus, 1758) / Meloncillo Lynx pardinus (Temminck, 1827) / Lince ibérico
3Mn	Especies forestales y vulnerabilidad media a la fragmentación.	Martes martes (Linnaeus, 1758) / Marta

A diferencia del **Índice de importancia** para la conectividad cuyo cálculo ha considerado los 12 ecoperfiles identificados en el trabajo original (véase el epígrafe 2.1.1.6) en este caso, se han tomado en cuenta, únicamente, los corredores identificados para los 4 ecoperfiles de especies no voladoras, ya que estos engloban las especies más afectadas por los efectos barrera de las infraestructuras lineales de transporte y con tasas de atropello y si-

niestralidad en carretera más altas.

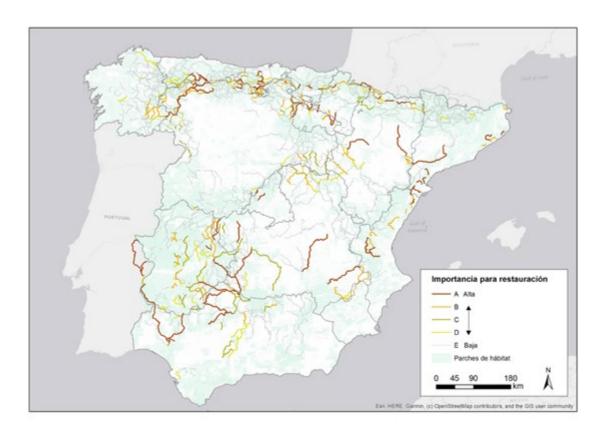
Los corredores se modelizaron para la España peninsular en el marco del trabajo "Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica" (MITECO 2023). En dicho trabajo se llevaron a cabo, entre otros, cuatro análisis de conectividad (Saura y Torné 2009, Saura y Pascual-Hortal 2007) para los cuatro ecoperfiles menciona-

dos²⁴ (para detalles sobre la metodología de evaluación de la conectividad <u>véase el</u> <u>Anexo II</u>). Dichos análisis permitieron:

- 1. Identificar, cartografiar y caracterizar redes de corredores ecológicos (rutas de movimiento) para los cuatro ecoperfiles.
- 2. Obtener índices individuales que informan de la importancia de cada corredor para conservación (dPC_c) y restauración (dPC_p) .

Los corredores con alto valor de dPC_c se destacan por tener actualmente condiciones suficientemente buenas que hay que proteger (corredores prioritarios para conservación). Por otro lado, los corredores con alto valor de dPC_R son aquellos que no tienen actualmente características de permeabilidad suficiente para realizar una aportación destacada a la conectividad, pero presentan una posición estratégica en el territorio. Si se mejorase su funcionalidad se produciría una mejora sustancial en la conectividad del conjunto de hábitats implicados (corredores prioritarios para restauración).

Los procedimientos que se describen en los epígrafes siguientes, se centran en este último índice, dado que permite identificar áreas óptimas en las que la ejecución de proyectos y actuaciones de restauración implicarían un beneficio máximo para la conectividad ecológica. 1) Jerarquización de los corredores según importancia para restauración


Como se ha mencionado anteriormente, se ha calculado para cada uno de los corredores de los cuatro ecoperfiles un índice (dPC_R) que permite conocer su importancia individual e identificar aquellos corredores que interesa más restaurar. Este índice valora la variación de la probabilidad de conectividad de las rutas de movimiento en caso de mejora de las condiciones del corredor (véase Anexo II). A mayor valor absoluto del dCP_R , mayor importancia del corredor para restauración. La clasificación en categorías de importancia de los corredores se ha realizado según se indica en la tabla 14.

De esta forma se obtiene el siguiente conjunto de categorías de importancia para restauración de los corredores identificados para los cuatro ecoperfiles considerados (Figura 22).

[24] En la evaluación de la conectividad se han identificado corredores ecológicos para 12 ecoperfiles. Sin embargo, en la identificación de las intersecciones entre la red viaria y los corredores ecológicos, se han considerado únicamente los corredores identificados para los 4 ecoperfiles de especies no voladoras, ya que estos engloban las especies más afectadas por los efectos barrera de las infraestructuras lineales de transporte y con tasas de atropello y siniestralidad en carretera más altas.

Tabla 14. Clasificación de corredores ecológicos según su prioridad para restauración.

Importancia para restauración de los corredores ecológicos		
Categoría	Criterio utilizado	
Α	25 corredores con mayor DPC _R	
В	26-50 corredores con mayor DPC _R	
С	51-75 corredores con mayor DPC _R	
D	76-100 corredores con mayor DPC _R	
E	Resto de corredores	

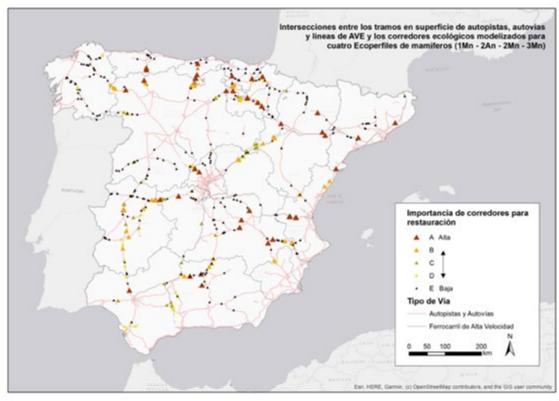
Figura 22. Clasificación de la importancia para restauración de los corredores ecológicos identificados para el conjunto de ecoperfiles analizados (1Mn, 2An, 2Mn y 3Mn).

 Importancia de las intersecciones entre corredores ecológicos y vías de comunicación

Una vez categorizados los corredores según su grado de importancia para restauración, se han localizado las **áreas de intersección** entre estos y la red viaria.

A las intersecciones se ha asignado una categoría en función de la importancia para restauración del corredor implicado, según se indica en la tabla 15.

Finalmente, cada intersección entre los corredores ecológicos y la red viaria se caracteriza por los siguientes atributos:


- Importancia para restauración del corredor implicado;
- Ecoperfil para el que se ha modelizado el corredor implicado;
- Tipo de infraestructura de transporte afectada;
- · Identificación de la vía implicada;
- Comunidad Autónoma dónde se ubica la intersección.

En la figura 23 se muestran las intersecciones entre tramos en superficie de los tipos de infraestructura con mayor efecto barrera (autovías, autopistas y ferrocarriles de alta velocidad) y las rutas preferentes de movimiento (corredores) de los cuatro ecoperfiles considerados. Las intersecciones se representan en función de la importancia para la restauración de los corredores. A partir de la información generada, se pueden visualizar de manera análoga las intersecciones con otros tipos de infraestructuras (carreteras nacionales, autonómicas o ferrocarriles convencionales), o incluso las intersecciones con los corredores de un ecoperfil en concreto.

En el <u>anexo III</u>, se presenta la cartografía de las intersecciones entre corredores ecológicos y la red viaria de las Comunidades Autónomas. Dicha cartografía puede contribuir a la localización de puntos concretos donde mejorar la permeabilidad de las vías y restaurar la conectividad ecológica de manera más efectiva.

Tabla 15. Criterios de priorización de las intersecciones entre corredores ecológicos y vías de transporte.

Intersección de las infraestructuras viarias con los corredores	Importancia de la inter- sección
Con un corredor de importancia para restauración A	А
Con un corredor B (y ninguno A)	В
Con un corredor C (y ninguno A ni B)	С
Con un corredor D (y ninguno A, B ni C)	D
Con un corredor E (y ninguno A, B, C ni D)	Е

Figura 23. Intersecciones entre los tramos en superficie de autovías, autopistas y ferrocarriles de alta velocidad y los corredores ecológicos modelizados para cuatro ecoperfiles (1Mn, 2An, 2Mn y 3Mn), categorizadas en función de la importancia de los corredores para restauración.

3) Importancia de cuadrículas UTM de 1x1 km según clase de intersección y tipo de infraestructura de transporte implicados.

La integración de la información sobre intersecciones entre corredores ecológicos y la red viaria al modelo global de áreas a desfragmentar requiere que dicha información emplee la misma escala de trabajo. Por esta razón, se ha cruzado la capa de intersecciones antes mencionada y la malla de cuadrículas de 1 km².

El valor de las cuadrículas se ha determinado considerando las categorías de las intersecciones (función de la importancia de los corredores para restauración) y el tipo de vía implicada, teniendo en cuenta que, en términos generales, el efecto barrera es mayor en las infraestructuras con vallado perimetral como autopistas, ferrocarriles de alta velocidad y ciertas autovías (Mata et al. 2006, Rosell et al. 2003).

Así, se han valorado las cuadrículas como se describe a continuación:

i) Si en una cuadrícula se localizan uno o varios puntos de intersección con tramos en superficie de autovías, autopistas y ferrocarriles de alta velocidad, se asigna a la cuadrícula la categoría de la intersección de mayor importancia, la cual se contabiliza de la siguiente manera:

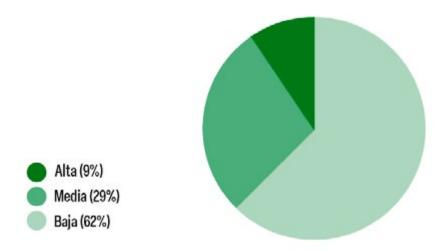
A=5; B=4; C=3; D=2; E=1

ii) Si en la cuadrícula existen uno o varios puntos de intersección con el resto de tipos de vías (carreteras nacionales, autonómicas y ferrocarriles convencionales), se asigna a la cuadrícula la categoría de la intersección de mayor importancia, la cual se contabiliza de la siguiente manera:

$$A = 0.5$$
; $B = 0.4$; $C = 0.3$; $D = 0.2$; $E = 0.1$

De esta forma, se ha evitado contabilizar varias veces un punto en el que coinciden dos o más intersecciones de distinta categoría (dado que en ocasiones enlaces de distinta categoría se superponen en el paisaje). En caso de confluir intersecciones del tipo i) y ii) en la misma cuadrícula, se suman ambos valores. Así, por ejemplo, las cuadrículas que obtienen una mayor valoración presentan un valor de 5,5 unidades. En las cuadrículas sin ninguna intersección el valor es cero.

Los análisis han revelado que:


- En la gran mayoría de las cuadrículas de la península esta variable toma valor 0 (es decir, ausencia de intersecciones entre corredores ecológicos e infraestructura de transporte en la cuadrícula; 494.369 cuadrículas de un total de 498.476, esto es, el 99,17% de las cuadrículas).
- De las cuadrículas con valor mayor que cero (0.83% del total), la mayoría tiene valores mínimos (0,1; 2.561 cuadrículas de 4.107) y bajos (entre 0,2-0,5; 1.167 cuadrículas).
- Solo un pequeño número de cuadrículas (379; 0,076%) poseen valores superiores a 0,5, englobando todas las intersecciones con autovías, autopistas y ferrocarriles de alta velocidad.

Dada esta distribución de frecuencias, finalmente, se han **clasificado las cuadrículas** en tres categorías de importancia para su posterior integración al análisis de coincidencias:

- Valor 1 (Baja): cuadrículas con valor igual a 0,1.
- Valor 2 (Media): cuadrículas con valor entre 0,2 y 0,5.
- Valor 3 (Alta): cuadrículas con valor superior a 0,5.

La distribución geográfica de las cuadrículas resultantes de dicha categorización se muestra en el <u>epígrafe 2.4</u>, para cada Comunidad Autónoma.

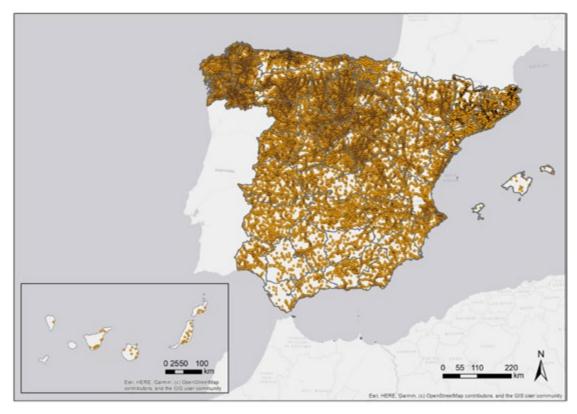
En la figura 24 se presenta la proporción de cuadrículas incluidas en las distintas categorías de importancia para restauración de la conectividad ecológica.

Figura 24. Proporción de cuadrículas de 1x1 km en las distintas categorías de importancia para la restauración de la conectividad ecológica en la España peninsular.

2.3.1.2 Densidad de Accidentes con fauna silvestre

Se ha partido de la información sobre accidentes con animales en las carreteras de España registrados en la base de datos ARENA2 de la Dirección General de Tráfico (DGT), en conjunto con información de la Dirección de Tráfico del Gobierno Vasco y del Servicio de Tráfico de Cataluña referente a la siniestralidad por colisiones con fauna silvestre en ambos territorios. Por lo tanto, los análisis se han realizado en base a información sobre siniestralidad por colisiones de fauna con vehículos para el 100% del territorio nacional, algo que no pudo conseguirse en la PT6-2013.

Tras el filtrado y procesado de los datos de ARENA 2 se ha obtenido un total de 74.668 registros de accidentes georreferenciados que se produjeron entre los años 2018-2021 y que involucran fauna silvestre. Esta información se ha complementado con 3.136 accidentes de igual naturaleza registrados en el mismo período en el País Vasco y con 14.930 registros de accidentes con fauna (en general) en Cataluña. En este último caso, no constaba en la base de datos de partida la información sobre el tipo de animal implicado en el accidente, por lo que no ha sido posible discriminar entre fauna silvestre y doméstica. Así, en Cataluña, se han cartografiado todos los registros de accidentes con fauna con información válida de localización. Además, es importante mencionar la menor precisión de esta información, ya que las coordenadas geográficas de los accidentes registrados en Cataluña se han calculado a partir de información de carretera y punto kilométrico.


Para los análisis de densidad de accidentes con fauna, se han considerado un total de 92,734 registros que incluyen información sobre el animal involucrado, la fecha, la provincia y las coordenadas geográficas del incidente. La introducción de

estos datos en el Sistema de Información Geográfica (SIG) se ha realizado de manera automatizada (Figura 25). En la tabla 16 se presenta el número de accidentes registrados en cada Comunidad Autónoma

Tabla 16. Número de accidentes viales con fauna silvestre implicada en las comunidades autónomas entre los años 2018 y 2021.

^{*} En Cataluña los registros se corresponden a los accidentes que involucran fauna silvestre y doméstica.

Comunidad Autónoma	Número de accidentes con fauna silvestre entre 2018-2021.
Andalucía	2.693
Aragón	5.641
Canarias	46
Cantabria	937
Castilla-La Mancha	8136
Castilla y León	34.209
Cataluña/ Catalunya	14.930*
Comunidad de Madrid	966
Comunidad Foral de Navarra	526
Comunitat Valenciana	2.355
Extremadura	2.348
Galicia	12.372
Illes Balears	22
La Rioja	1125
País Vasco/Euskadi	3136
Principado de Asturias	2.894
Región de Murcia	398
Total	92.734

Figura 25. Registros de accidentes viales con fauna silvestre implicada entre los años 2018 y 2021.

* En Cataluña los puntos se corresponden a registros de accidentes con fauna silvestre y doméstica.

Mediante la superposición de la capa de puntos de accidentes y la malla de cuadrículas UTM de 1km² se ha obtenido la densidad de accidentes (nº de accidentes/km²) con fauna silvestre en cada Comunidad Autónoma. Para su posterior integración al análisis de coincidencias se han clasificado las cuadrículas, en tres categorías de importancia como se describe a continuación:

 Valor 1 (Baja): cuadrículas con un solo accidente, ya que la aparición de un único accidente en una cuadrícula puede ser un fenómeno azaroso y muy extendido en las circunstancias actuales:

- Valor 2 (Media): cuadrículas con 2-3 accidentes, ya que la aparición de más de un accidente en una cuadrícula puede estar reflejando un problema más crónico o emergente;
- Valor 3 (Alta): cuadrículas con más de 3 accidentes. Pueden estar indicando la presencia de tramos de concentración de accidentes.

Las cuadrículas con ausencia de registros de accidentes reciben valor 0. La cartografía resultante de esta categorización se presenta en el <u>epígrafe 2.4</u> para cada Comunidad Autónoma.

2.3.1.3 Intersecciones entre la red viaria y vías pecuarias

Las vías pecuarias constituyen un extenso patrimonio natural y cultural, y forman parte esencial de la infraestructura verde. Establecidas originalmente para el transporte de ganado, también pueden contribuir a la adaptación al cambio climático (Manzano y Malo 2006) y cumplir la función de mejorar la conexión entre áreas naturales de alto valor. Así, podrían favorecer el desplazamiento de las especies silvestres en busca de nuevos territorios en los que prosperar, especialmente, si se restauran dichas vías con ese objetivo (Hilty et al. 2021). Por ello se han incluido en los análisis las intersecciones entre la Red Nacional de Vías Pecuarias (RNVP) y la red viaria como una variable complementaria. El obietivo es detectar zonas de posible conflicto entre ambas redes e identificar áreas importantes para permeabilización.

Se ha partido de la cartografía de las vías pecuarias incluidas en RNVP (Figura 26) y de los tramos superficiales de las vías de transporte extraídos de la BCN200. A fin de identificar las cuadrículas donde se producen intersecciones entre la red viaria y vías pecuarias, la capa de intersecciones se ha superpuesto la malla de cuadrículas UTM de 1x1 km que abarca todo el territorio.

A diferencia de las demás variables complementarias, ésta se integra al análisis de coincidencias como un factor de ajuste del grado de prioridad de una cuadrícula (para más detalles véase Epígrafe 2.3). Así, en este caso específico, la reclasificación de la información se ha llevado a cabo asignando el valor 1 a cuadrículas con presencia de intersecciones y el valor 0 al resto de cuadrículas.

La decisión de incluir las intersecciones entre la red viaria y las vías pecuarias como una variable secundaria, se debe al deterioro general del estado de conservación de las vías pecuarias y a que, en la actualidad, muchas de ellas se corresponden con carreteras y caminos. La superficie real de estas vías con potencial para favorecer la conectividad podría ser inferior a la que se espera, comprometiendo su relevancia como corredores ecológicos.

La cartografía resultante de este procedimiento se presenta en el <u>epígrafe 2.4</u> para cada Comunidad Autónoma.

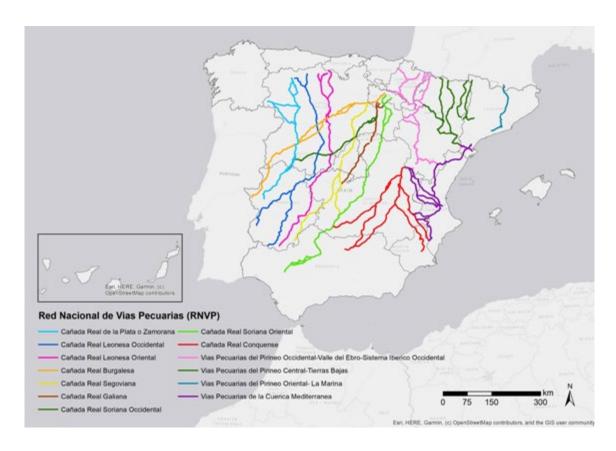


Figura 26. Red Nacional de Vías Pecuarias (RNVP). Fuente: MITECO

2.3.2 Análisis de coincidencias e identificación de cuadrículas prioritarias a desfragmentar en ámbito autonómico

Una vez obtenidas y reclasificadas las variables complementarias, el **procedimiento para priorizar áreas** dentro del conjunto de cuadrículas importantes a desfragmentar en cada Comunidad Autónoma se ha llevado a cabo mediante **análisis de coincidencias**, en dos etapas:

Etapa- 1. Identificación y clasificación de cuadrículas prioritarias. El criterio de base es que un área importante a desfragmentar sería aún más relevante (prioritaria) si en ella coinciden intersecciones entre infraestructuras viarias y corredores ecológicos y/o accidentes con fauna silvestre. Así, se ha partido de la capa con los dos subconjuntos de cuadrículas importantes a desfragmen-(CI-PNPF_{CC.AA.} y CI-PNMF_{CC.AA.}) y, para cada registro, se han sumado los valores correspondientes a las categorías (3-Alta, 2-Media, 1-Baja) de las tres variables consideradas: 1) Índice de importancia para desfragmentación, 2) Intersecciones entre la red varia y corredores ecológicos y, 3) Densidad de accidentes con fauna silvestre. A continuación, se han identificado las cuadrículas prioritarias a

desfragmentar en ámbito autonómico (CP-PNPF_{CC.AA.} ²⁶ y CP-PNMF_{CC.AA.} ²⁷) seleccionando en la base de datos, todas las cuadrículas con valor mayor que 0 en al menos dos de los 3 criterios mencionados.

Finalmente, los valores de las cuadrículas prioritarias podrían oscilar entre 2 (coincidencia de 2 criterios con baja prioridad) hasta 9 (coincidencia de los tres criterios con máxima prioridad). Estos valores se han reagrupado en tres categorías de prioridad:

- Valor 1 (Baja): Valores de coincidencias 2-3
- Valor 2 (Media): Valores de coincidencias 4-6
- Valor 3 (Alta): Valores de coincidencias 7-9

Etapa 2. Ajuste del grado de prioridad. Se ha llevado a cabo incrementando en 1 punto, el valor de categoría de las cuadrículas que contienen al menos una intersección entre la red viaria y la RNVP. Así, los valores de las cuadrículas prioritarias varían entre 1 y 4. La presencia de dichas intersecciones influye, únicamente, en las cuadrículas de categoría media y baja. En la práctica, no alteran aquellas cuadrículas que ya estaban clasificadas como de alta prioridad. Tras el ajuste,

se han reagrupado las cuadrículas en tres categorías:

- Valor 1 (Baja): Valor de ajuste del grado de prioridad 1
- Valor 2 (Media): Valor de ajuste del grado de prioridad 2
- Valor 3 (Alta): Valor de ajuste del grado de prioridad 3-4

En base a estos valores se ha generado para cada Comunidad Autónoma peninsular un mapa de cuadrículas prioritarias a desfragmentar (véase cartografía correspondiente en el epígrafe 2.4).

En el caso particular de las Comunidades Autónomas insulares, las cuadrículas indicadas para actuaciones de desfragmentación son las señaladas como CI-PNPF_{CC.AA.} ²⁸ y CI-PNMF_{CC.AA.} ²⁹. Dichas cuadrículas se han identificado, únicamente, en base a los índices de importancia para mitigación de los efectos de las infraestructuras lineales de transporte sobre la biodiversidad (Epígrafe 2.2.2 del esquema metodológico general). Ello se debe, por un lado, al bajo número de registros de accidentes con fauna silvestre en Baleares y Canarias y por otro, a que todavía no se dispone de información sobre corredores ecológicos en las islas, lo que imposibilita cumplir con los criterios del análisis de coincidencias de forma similar al resto de CC. AA.

[26] Cuadrículas prioritarias a desfragmentar en el ámbito de las CC. AA. en áreas de patrimonio natural poco fragmentado.

[27] Cuadrículas prioritarias a desfragmentar en el ámbito de las CC. AA. en áreas de patrimonio natural muy fragmentado.

[28] Cuadrículas importantes a desfragmentar en el ámbito de las CC. AA. en áreas de patrimonio natural poco fragmentado.

[29] Cuadrículas importantes a desfragmentar en el ámbito de las CC. AA. en áreas de patrimonio natural muy fragmentado.

2.3.3 Análisis de coincidencias e identificación de cuadrículas de máxima prioridad a desfragmentar en ámbito autonómico

Dado el elevado número de cuadrículas prioritarias identificadas en la mayoría de CC.AA. (véase cartografía correspondiente en el epígrafe 2.4), se ha realizado un segundo filtrado, elevando el nivel de exigencia del análisis de coincidencias con el objeto de identificar un conjunto más reducido de cuadrículas de máxima prioridad a desfragmentar en cada Comunidad Autónoma.

La idea básica es que, para ser de máxima prioridad, una cuadrícula debe tener categoría de prioridad media-alta y en ella deben coincidir el mayor número de indicadores de la necesidad de permeabilización de la vía. Así, se han considerado cuadrículas de máxima prioridad a desfragmentar en ámbito autonómico (CP_{Max}PNPF_{CC.AA}. y CP_{Max}PNMF_{CC.AA}.), aquellas cuadrículas de prioridad media o alta en las que coinciden accidentes con fauna silvestre e intersecciones entre corredores ecológicos y la red viaria.

Se ha partido de la capa que contiene los subconjuntos de cuadrículas prioritarias a desfragmentar (CP-PNPF_{CC. AA.} y CP-PNMF_{CC. AA.}). Se han seleccionado los registros clasificados como de prioridad media (valor:2) y alta (valor:3) y entre estos, se han seleccionado todas las cuadrículas con valor mayor que 0 (3-Alta, 2-Media, 1-Baja) en las tres variables con-

sideradas: 1) Índice de importancia para desfragmentación, 2) Intersecciones entre la red varia y corredores ecológicos y, 3) Densidad de accidentes con fauna silvestre.

El valor de las cuadrículas de máxima prioridad se obtiene, para cada uno de los escenarios considerados, de la suma de las categorías de las tres variables antes mencionadas. En los casos en que las cuadrículas sean de máxima prioridad en ambos índices de mitigación 30, la suma se realiza considerando el valor más alto. Así, los valores de las cuadrículas identificadas oscilan entre 4 (coincidencia de 1 criterio de prioridad media y 2 criterios de baja prioridad) hasta 9 (coincidencia de los tres criterios con máxima prioridad). Finalmente, estos valores se han ajustado incrementando en 1 punto el valor final de las cuadrículas que contienen al menos una intersección entre la red viaria y la RNVP.

A diferencia de las demás tipologías de cuadrículas, las de máxima prioridad en ámbito autonómico se han cartografiado sin una clasificación previa. Esto se debe a que, en este último caso, el alto nivel de exigencia en los análisis de coincidencias ha permitido refinar los resultados, reduciendo el número de cuadrículas identificadas a un conjunto más manejable y facilitando la toma de decisiones sobre dónde llevar a cabo las actuaciones de desfragmentación. No obstante, en caso de ser necesario seguir jerarquizando estas cuadrículas para orientar la ejecución

[30] Esto se debe a que los modelos calculados para la identificación de áreas importantes para mitigación de los efectos de las ILT en la biodiversidad han identificado no solo los casos extremos que se pretendía identificar inicialmente, sino también cuadrículas importantes desde el punto de vista de conservación del patrimonio natural en territorios con grado de fragmentación medio.

efectiva de las acciones, se puede recurrir a la información de "Valor de Máxima Prioridad" almacenada en las tablas de atributos de las capas SIG correspondientes.

Los resultados obtenidos deberían validarse mediante estudios a escala de mayor detalle y/o comprobaciones en campo que permitan identificar con precisión los lugares concretos para las actuaciones.

Por otro lado, el procedimiento empleado permite un alcance más amplio cuando se analiza la información de manera integral, evaluando de manera conjunta las variables consideradas y el impacto de cada una de ellas en las distintas unidades geográficas. De esta forma, se podría enriquecer significativamente la interpretación de los resultados generados y dirigir actuaciones más efectivas para mejorar la permeabilidad de las vías.

En el epígrafe 2.4 se muestran para cada Comunidad Autónoma, la cartografía con la distribución espacial de las cuadrículas de máxima prioridad a desfragmentar en ámbito autonómico. Se incluye, además, una tabla con el listado de dichas cuadrículas junto a sus valores y tipología.

2.4 Cartografía generada por Comunidad Autónoma

Se presenta aquí la cartografía generada para cada Comunidad Autónoma, siguiendo el orden alfabético según el nombre oficial incluido en las directrices toponímicas del Instituto Geográfico Nacional (IGN, 2011). Dicha cartografía se corresponde con las variables consideradas en los análisis de coincidencias llevados a cabo para identificar las cuadrículas prioritarias y de máxima priori-

dad a desfragmentar en el ámbito de las CC.AA., así como a los resultados de dichos análisis.

Como se ha explicado anteriormente, excepcionalmente, en los casos de Canarias y Baleares no ha sido posible realizar los análisis de coincidencias de forma similar al resto de comunidades autónomas, por ello se presenta únicamente la cartografía de cuadrículas importantes a desfragmentar en ámbito autonómico. En trabajos futuros se podrán llevar a cabo los análisis correspondientes para determinar las cuadrículas prioritarias y de máxima prioridad para estas CC.AA.

A continuación, se describe, brevemente la cartografía aportada:

- Cuadrículas importantes a desfragmentar en ámbito autonómico: Se identifican en base a los índices de importancia para mitigación de efectos de vías de transporte en áreas de patrimonio natural poco y muy fragmentado (para detalles sobre el cálculo de estos índices véase el epígrafe 2.2). Se han establecido tres categorías de importancia con igual número de cuadrículas según los valores de estos índices, tal como se indica a continuación:
 - Los tonos fríos de la gama de verde-azulados identifican cuadrículas importantes en las que el grado de fragmentación actual es bajo, aunque por ellas discurre alguna infraestructura viaria y puede haber una afección potencial a alguno de los elementos de la biodiversidad (atropello o efecto barrera para especies sensibles, por ejemplo). En muchos casos identifican sectores que, aunque no requieren medidas de desfragmentación, es necesario

preservar de la aparición de nuevos elementos fragmentantes (como nuevas vías) o evitar el refuerzo del efecto barrera en las ya existentes (ampliación de vías).

- Los tonos cálidos de la gama de **naranja-rojos**, identifican cuadrículas con conflictos en las que el grado de fragmentación actual es ya elevado; en algunos casos coinciden con zonas con un alto grado de desarrollo de espacios urbanizados en los que es posible que ya no sea necesaria la aplicación de medidas de desfragmentación. En otros casos, en cambio, la aplicación de medidas en estos puntos puede contribuir a restaurar la conectividad en áreas críticas.

En todos los casos, se destacan cuadrículas de especial interés donde estudios más detallados podrán determinar qué medidas específicas será necesario implementar.

• Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias: indica las cuadrículas en las que se produce la intersección de vías de transporte con corredores ecológicos prioritarios para restauración (para detalles sobre la modelización de los corredores véase el Anexo II). Al igual que las áreas importantes a desfragmentar en el ámbito de las CC.AA. se han establecido 3 categorías de importancia de las cuadrículas. Dichas categorías reflejan el interés del corredor para restauración³¹ y el efecto potencial

del tipo de vía sobre la conectividad³². Para detalles sobre los procedimientos de valoración de las cuadrículas véase el epígrafe 2.3.1.1.

- · Densidad de accidentes con fauna silvestre: refleja las cuadrículas UTM de 1 km² en las que se han detectado accidentes con fauna silvestre (epígrafe 2.3.1.2). En el caso de Cataluña no ha sido posible diferenciar fauna silvestre y doméstica, por lo que se han considerado todos los accidentes con fauna con registro válido de localización. Se han establecido 3 categorías de importancia en función del número de accidentes detectados en cada cuadrícula. Los registros de accidentes han sido georreferenciados en la totalidad del territorio (excepto en Cataluña donde las coordenadas han sido calculadas a partir del punto kilométrico). Es importante señalar que la mortalidad de grupos taxonómicos de menor tamaño y/o de baja persistencia y detectabilidad en la calzada queda subestimada en este mapa.
- Intersecciones entre vías pecuarias y la red viaria: refleja las cuadrículas UTM de 1 km² que contienen intersecciones entre la red viaria y vías pecuarias. Esta variable se ha considerado como un factor de ajuste, al alza, del grado de prioridad de las cuadrículas. Esta cartografía se ha generado únicamente para las CC. AA. que tienen vías pecuarias integradas a la RNVP. Para más detalles sobre la integración de esta variable a los análisis de coincidencias véase el epígrafe 2.3.1.3.

^[31] Cuanto mayor el interés del corredor para restauración mayor la contibución a la conectividad ecológica en caso de restauración del corredor.

^[32] Las intersecciones con líneas de alta velocidad y con vías de gran capacidad (autopistas, autovías y carreteras de doble calzada) tendrían efectos más severos sobre la conectividad.

- · Cuadrículas prioritarias a desfragmentar en ámbito autonómico: muestra, para cada uno de los escenarios de fragmentación, las cuadrículas importantes en las que coinciden al menos una de las variables complementarias consideradas: 1) Intersecciones entre la red viaria y corredores ecológicos y/o 2) Accidentes con fauna silvestre. El grado de prioridad de estas cuadrículas se ha ajustado una categoría, al alza, siempre que, en estas, haya una o más intersecciones entre la red viaria y la RNVP. Para detalles sobre el procedimiento de priorización de las cuadrículas véase el epígrafe 2.3.2.
- Cuadrículas de máxima prioridad a desfragmentar en ámbito autonómico: muestra, para cada uno de los escenarios de fragmentación, las cuadrículas de prioridad media-alta en las que coinciden: 1) Intersecciones entre la red viaria y corredores ecológicos y 2) Accidentes con fauna silvestre). El valor final de estas cuadrículas se ha incrementado, siempre que, en estas, haya una o más intersecciones entre la red viaria y la RNVP. Para detalles sobre el procedimiento de identificación de estas cuadrículas véase el epígrafe 2.3.3.

Al interpretar los mapas generados, es imporante considerar que estos facilitan la identificación de:

- Áreas prioritarias para la ejecución de medidas de permeabilización.

- Tramos de vías de transporte con problemas de siniestralidad donde es necesario mejorar vallados perimetrales en autopistas y autovías, en combinación con la construcción de pasos de fauna, o bien aplicar otras medidas para reducir el riesgo de accidentes provocados por fauna silvestre.
- Áreas o tramos de vías de transporte donde puedan existir potencialmente problemas de atropello de fauna en función del cruce con corredores ecológicos y/o vías pecuarias.
- Áreas donde los índices de importancia para mitigación de efectos de las vías de transporte presentan altos valores, desde el punto de vista de conservación del medio natural.

2.4.1 Andalucía

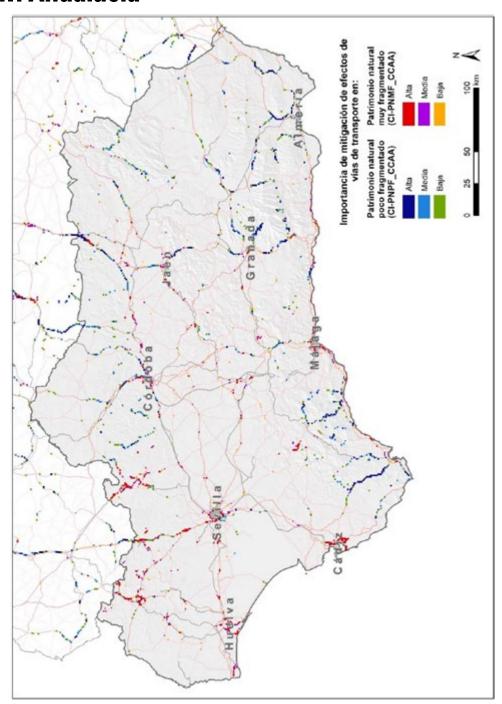


Figura 27. Andalucía. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 889). Esta selección refleja por tanto las áreas más importantes en Andalucía independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

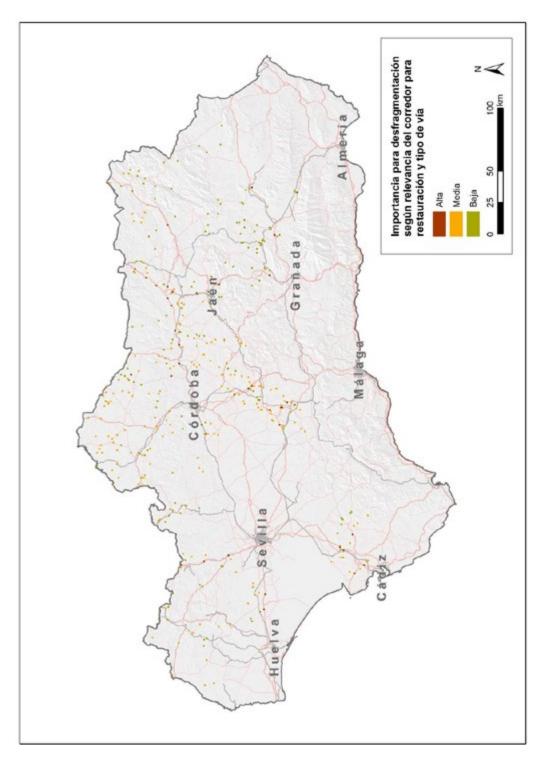


Figura 28. Andalucía. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

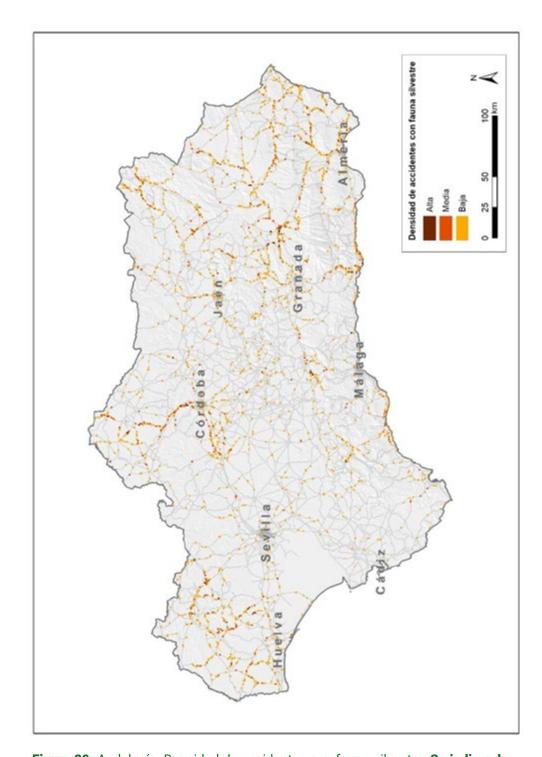


Figura 29. Andalucía. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (2.055 cuadrículas en total en Andalucía). Las cuadrículas se clasifican según densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

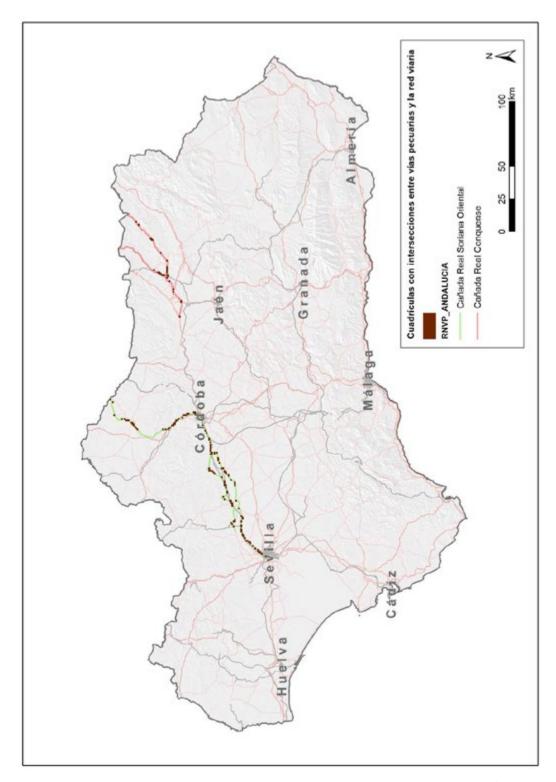


Figura 30. Andalucía. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

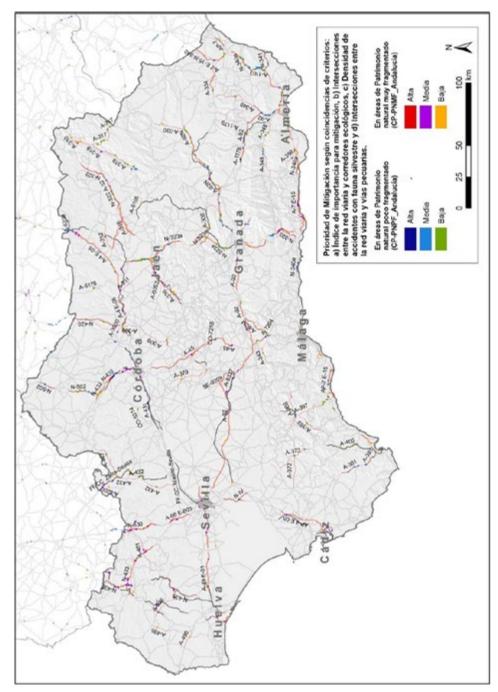


Figura 31. Andalucía. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 27) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 28) y/o accidentes con fauna silvestre (Figura 29). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 30). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

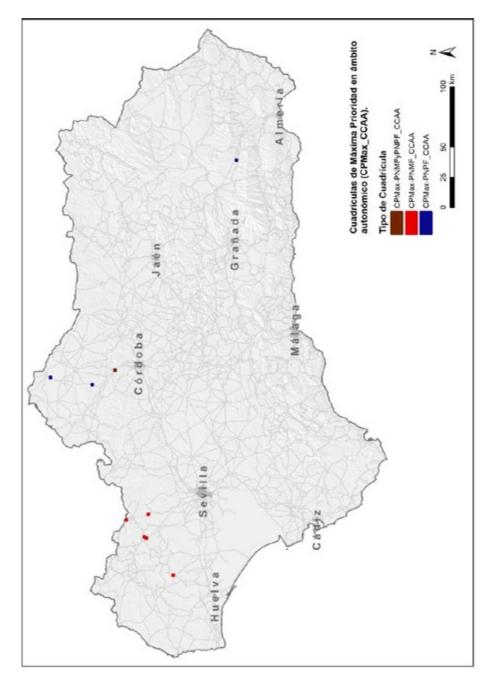


Figura 32. Andalucía. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 31), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 28) y, c) Accidentes con fauna silvestre (Figura 29). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 30). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA}.), en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA}.) y aquellas que han resultado de máxima prioridad en ambos escenarios (CP_{Max}PNMFyPNPF_{CC.AA}).

Tabla 17. Cuadrículas de máxima prioridad a desfragmentar en Andalucía. Se indican con un * las cuadrículas que también han resultado máxima prioridad a nivel estatal.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	30SUH3815*	7
CP _{Max} PNMF _{CC.AA.}	29SQB4786	7
	29SPB9862	5
	29SQB2786	5
	29SQB2888	5
	29SQC4104	5
CP _{Max} PNPF _{CC.AA.}	30SWG1213	8
	30SUH3269	6
	30SUH2634	5

2.4.2 Aragón

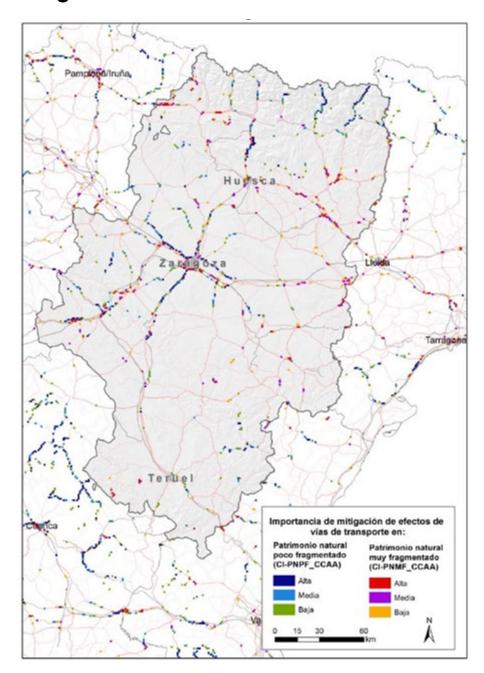


Figura 33. Aragón. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 488). Esta selección refleja por tanto las áreas más importantes en Aragón independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

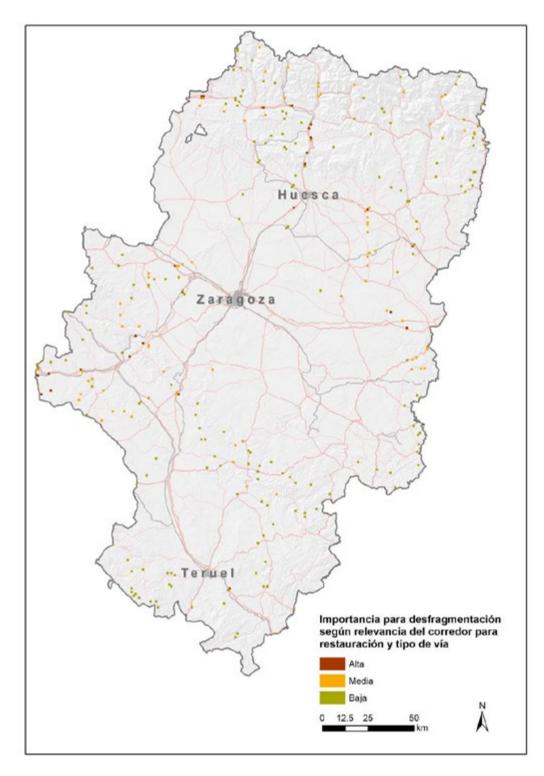


Figura 34. Aragón. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

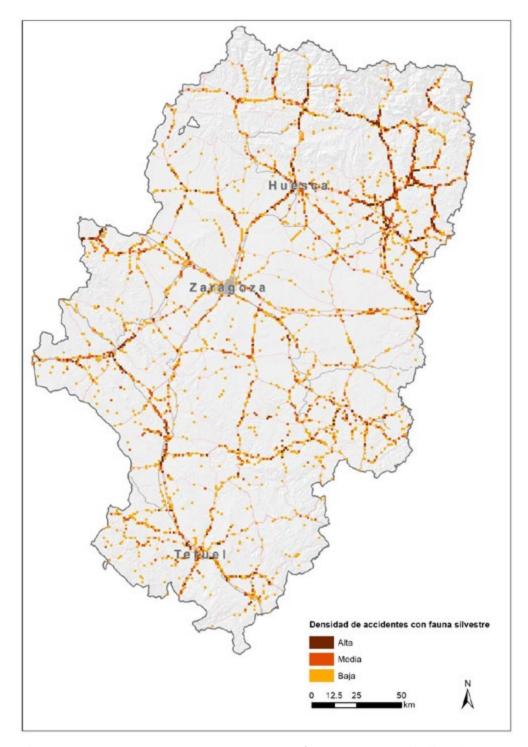


Figura 35. Aragón. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (2.977 cuadrículas en total en Aragón). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase Epígrafe 2.3.1.2 para detalles sobre metodología.

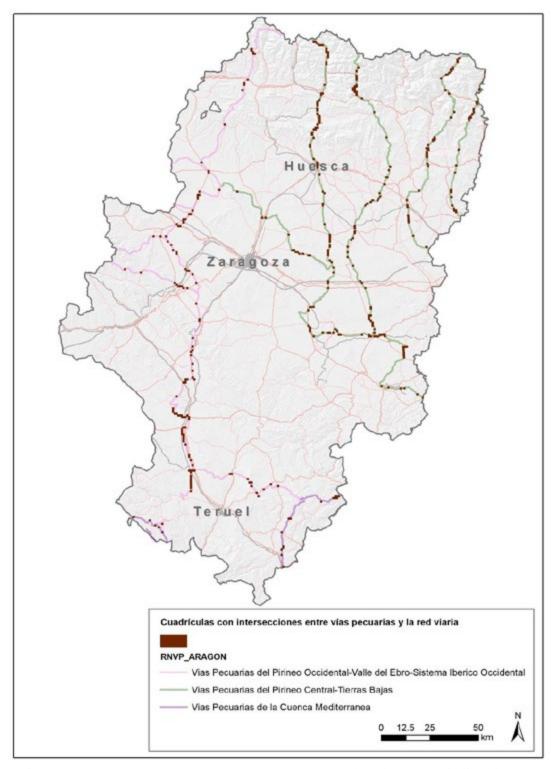


Figura 36. Aragón. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

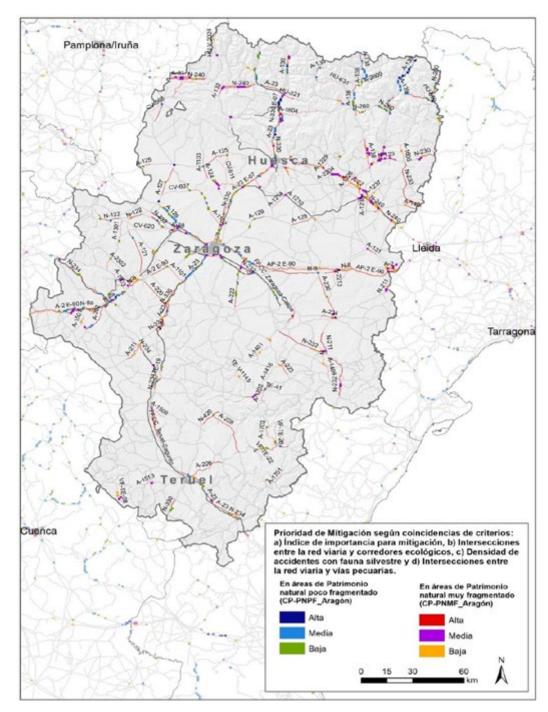


Figura 37. Aragón. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 33) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 34) y/o accidentes con fauna silvestre (Figura 35). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 36). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

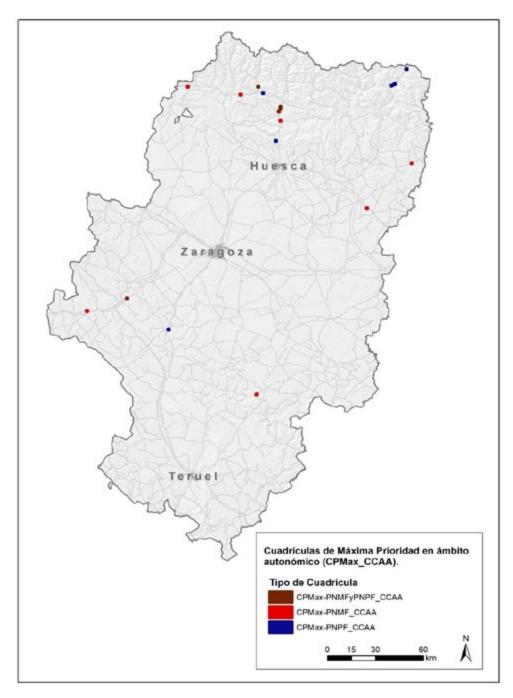


Figura 38. Aragón. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 37), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 34) y, c) Accidentes con fauna silvestre (Figura 35). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 36). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado ($\text{CP}_{\text{Max}}\text{PNMF}_{\text{CC.AA.}}$), en Patrimonio Natural Poco Fragmentado ($\text{CP}_{\text{Max}}\text{PNPF}_{\text{CC.AA.}}$) y aquellas que han resultado de máxima prioridad en ambos escenarios ($\text{CP}_{\text{Max}}\text{PNMFyPNPF}_{\text{CC.AA.}}$).

Tabla 18. Cuadrículas de máxima prioridad a desfragmentar en Aragón. Se indican con un * las cuadrículas que también han resultado de máxima prioridad a nivel estatal.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	30TYN1403*	10
	30TYN1506*	9
	30TXL1982	8
	30TYN1505	6
	30TYN0119	5
	31TBG7139	9
	30TXN9014	6
CP _{Max} PNMF _{CC.AA.}	30TYM1597*	6
	30TWL9474	5
	30TYL0020	5
	31TCG0166	5
	30TXN5719	4
CP _{Max} PNPF _{CC.AA.}	30TYM1284*	9
	31TBH9418*	9
	31TBH9217	8
	30TXL4562	7
	31TCH0227*	6
	30TYN0415	4

2.4.3 Canarias

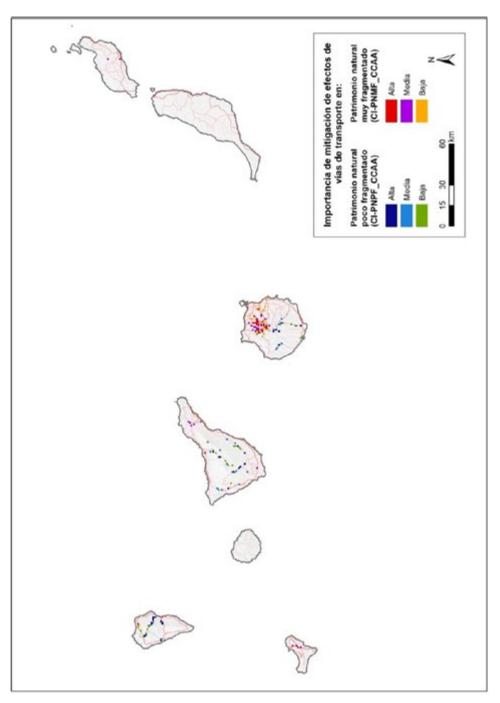


Figura 39. Canarias. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 83). Esta selección refleja por tanto las áreas más importantes en Canarias independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

2.4.4 Cantabria

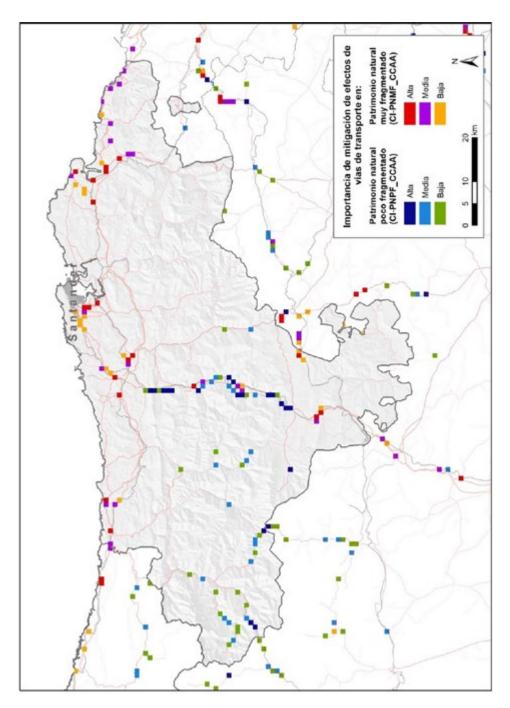


Figura 40. Cantabria. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 57). Esta selección refleja por tanto las áreas más importantes en Cantabria independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

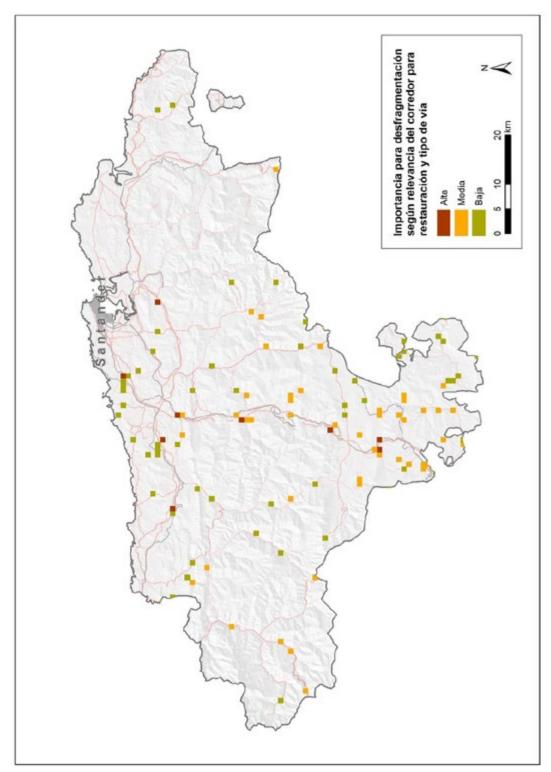


Figura 41. Cantabria. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

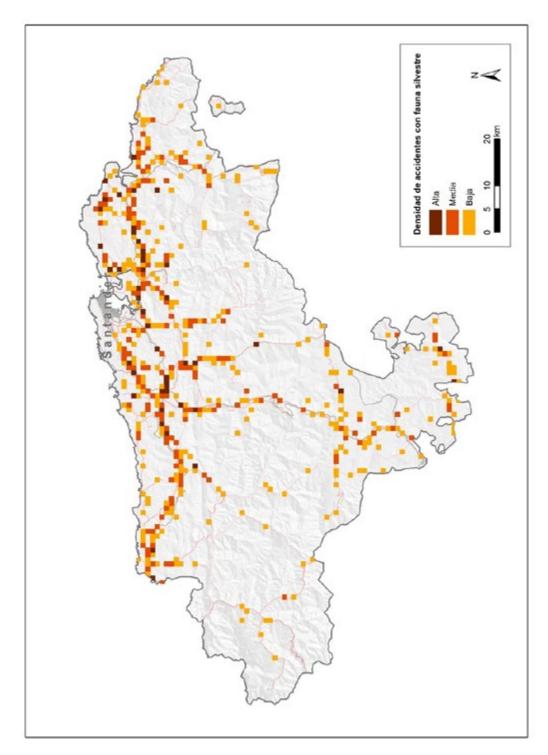


Figura 42. Cantabria. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (515 cuadrículas en total en Cantabria). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

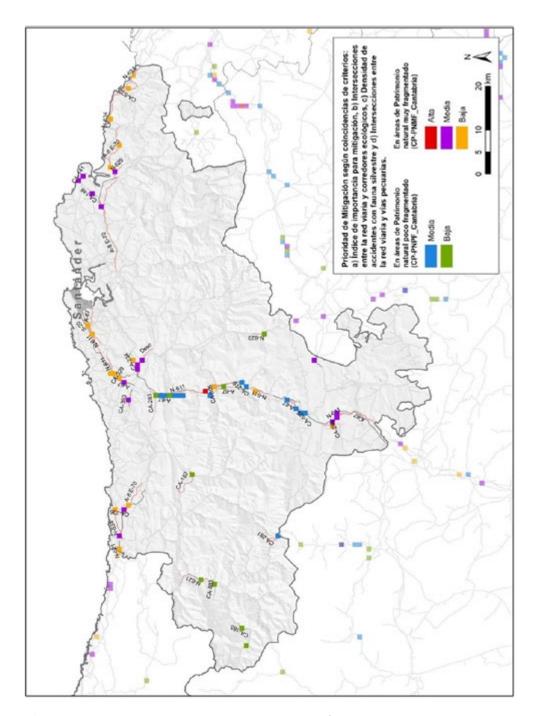


Figura 43. Cantabria. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 40) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 41) y/o accidentes con fauna silvestre (Figura 42). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias. En este caso no hay vías pecuarias en la Comunidad Autónoma. Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

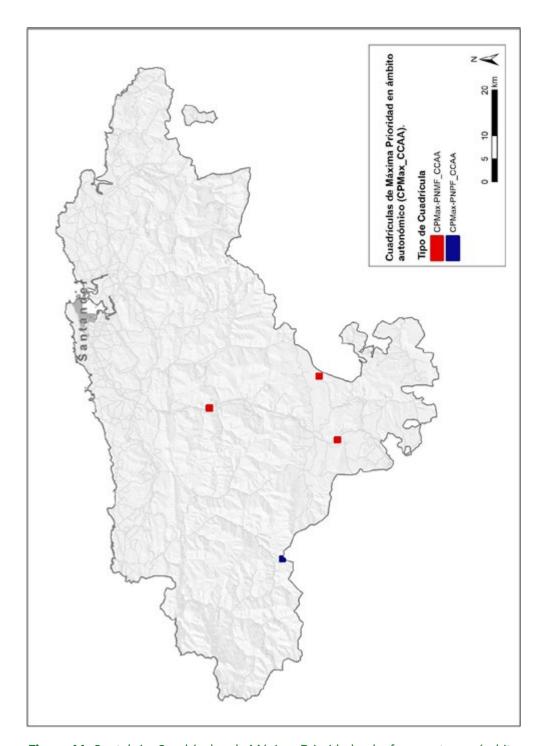


Figura 44. Cantabria. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 43), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 41) y, c) Accidentes con fauna silvestre (Figura 42). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC. AA.}) y en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA.}).

Tabla 19. Cuadrículas de máxima prioridad a desfragmentar en Cantabria.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.}	30TVN1384	7
	30TVN0656	5
	30TVN2060	4
CP _{Max} PNPF _{CC.AA.}	30TUN8068	5

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.5 Castilla-La Mancha

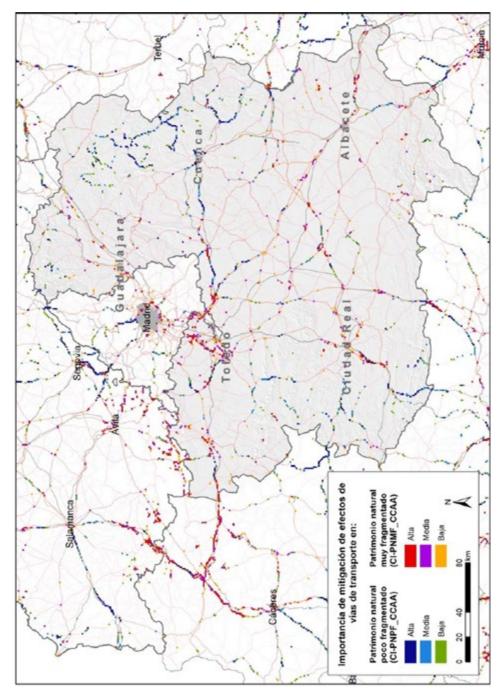


Figura 45. Castilla-La Mancha. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 808). Esta selección refleja por tanto las áreas más importantes en Castila la Mancha independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

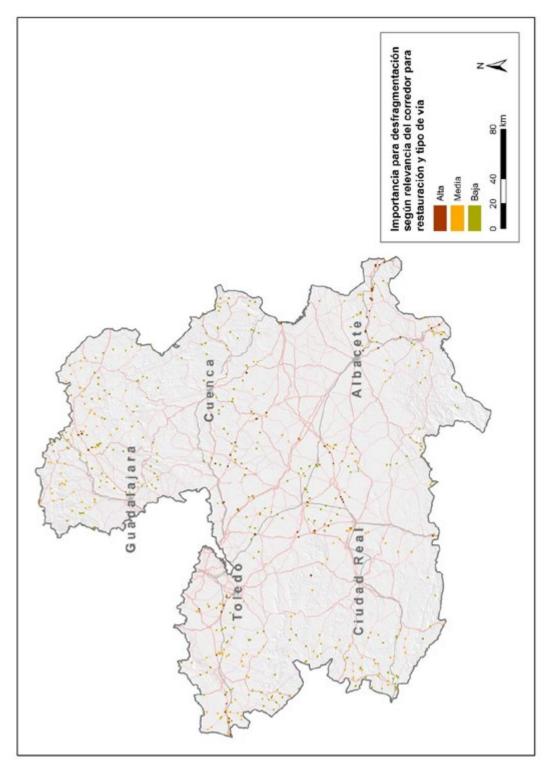


Figura 46. Castilla-La Mancha. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

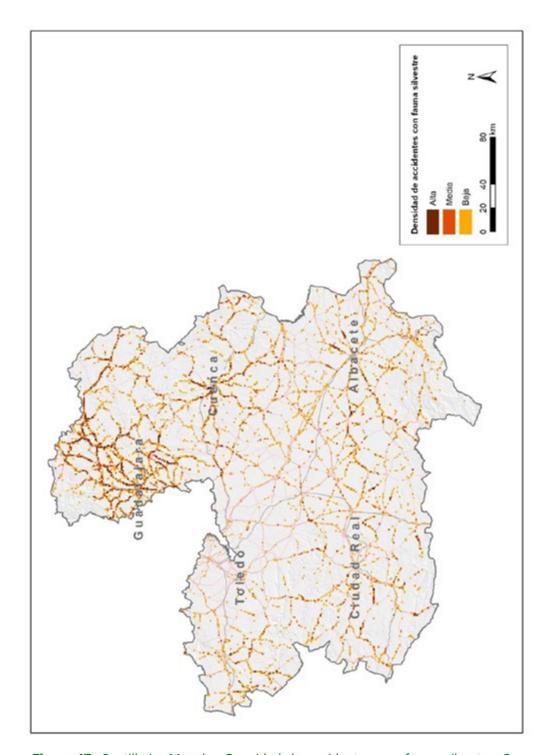


Figura 47. Castilla-La Mancha. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (4.652 cuadrículas en total en Castilla-La Mancha). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

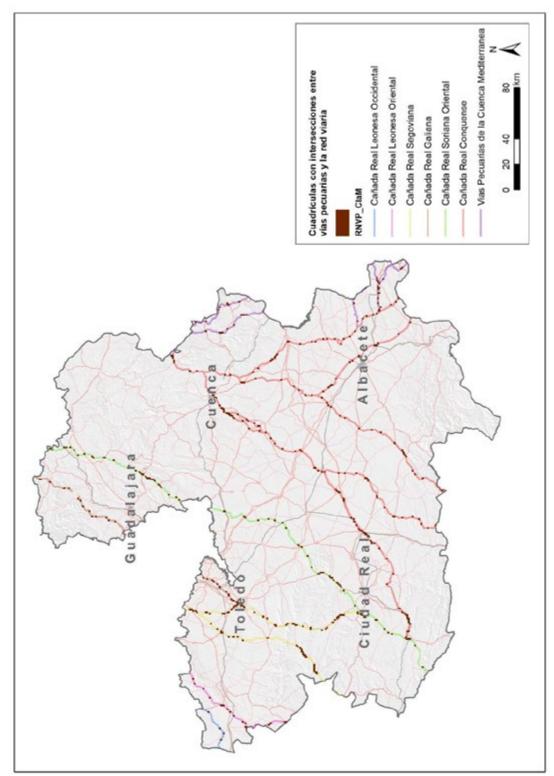


Figura 48. Castilla-La Mancha. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

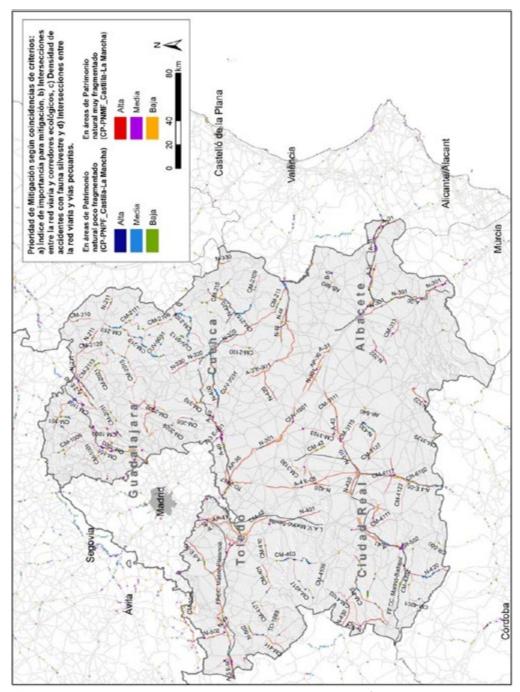


Figura 49. Castilla-La Mancha. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 45) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 46) y/o accidentes con fauna silvestre (Figura 47). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 48). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

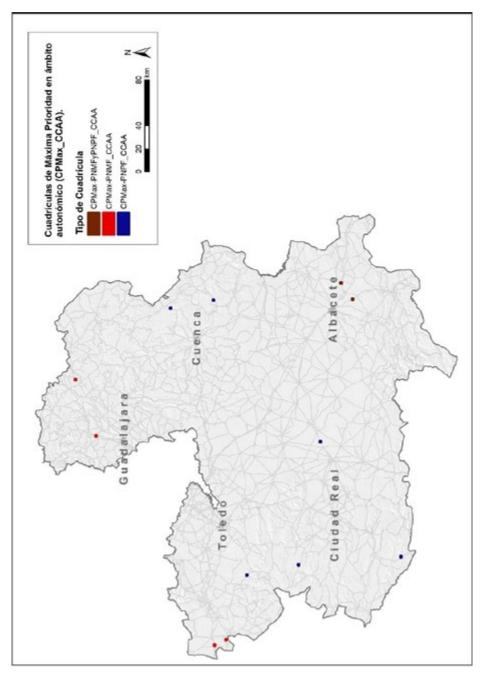


Figura 50. Castilla-La Mancha. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 49), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 46) y, c) Accidentes con fauna silvestre (Figura 47). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 48). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado ($\text{CP}_{\text{Max}}\text{PNMF}_{\text{CC.AA.}}$), en Patrimonio Natural Poco Fragmentado ($\text{CP}_{\text{Max}}\text{PNPF}_{\text{CC.AA.}}$) y aquellas que han resultado de máxima prioridad en ambos escenarios ($\text{CP}_{\text{Max}}\text{PNMFyPNPF}_{\text{CCAA}}$).

Tabla 20. Cuadrículas de máxima prioridad a desfragmentar en Castilla-La Mancha.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	30SXJ2109	7
	30SXH0799	6
CP _{Max} PNMF _{CC.AA.}	30TWL3740	9
	30SUK0619	7
	30TVL8822	6
	30SUK1109	5
CP _{Max} PNPF _{CC.AA.}	30SVJ8327	7
	30SUJ6791	6
	30SUJ7646	5
	30SXK0620	5
	30SUH8357	4
	30TWK9957	4

2.4.6 Castilla y León

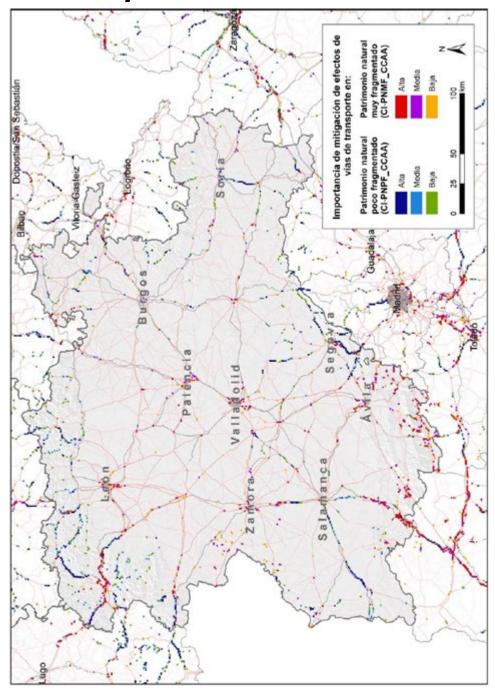


Figura 51. Castilla y León. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 961). Esta selección refleja por tanto las áreas más importantes en Castilla y León independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

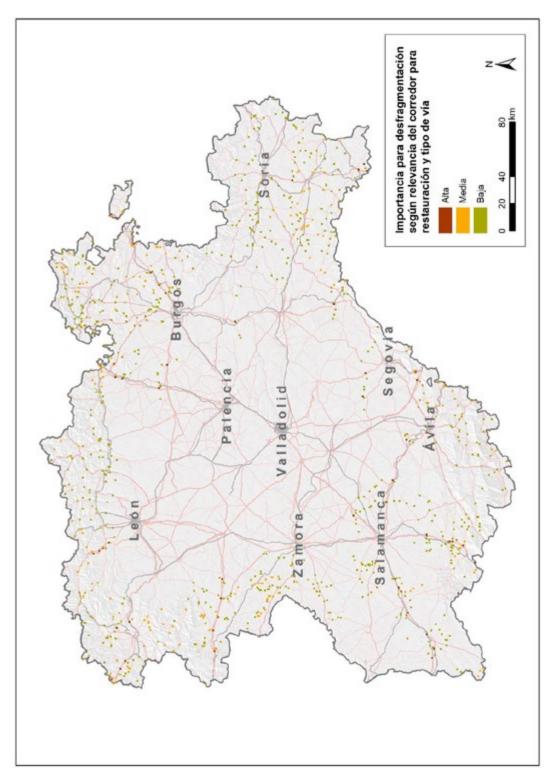


Figura 52. Castilla y León. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

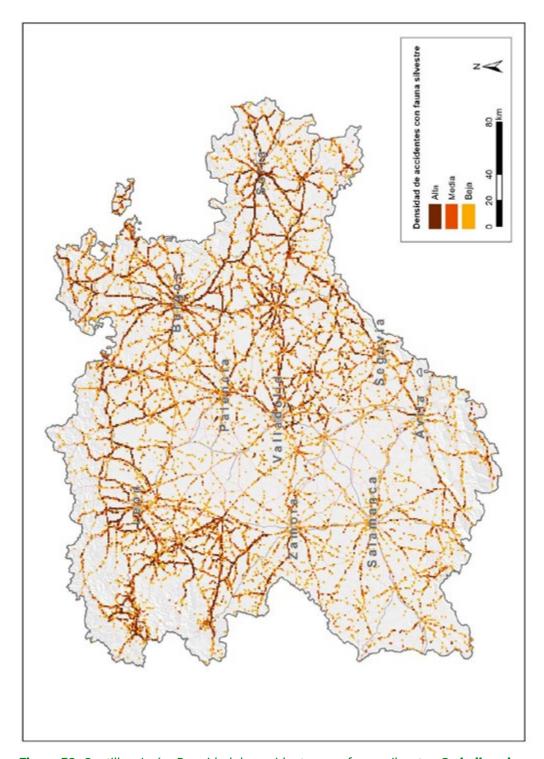


Figura 53. Castilla y León. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (12.808 cuadrículas en total en Castilla y León). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

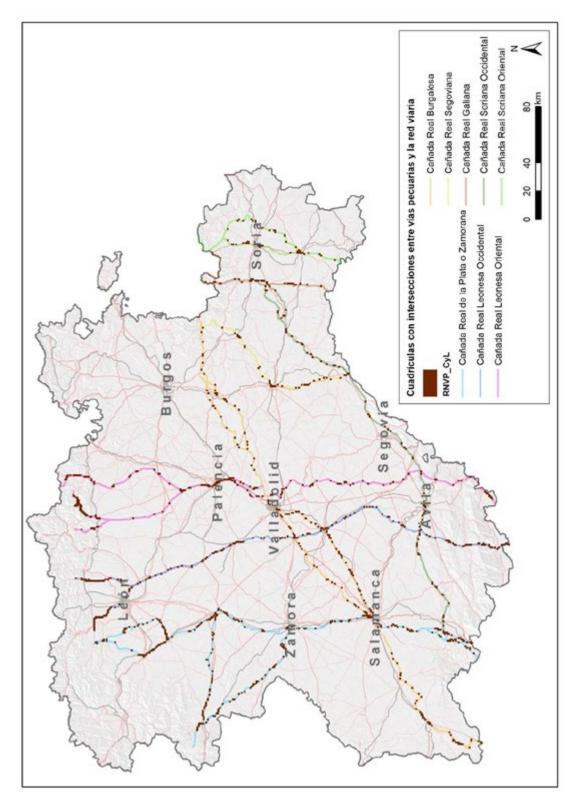


Figura 54. Castilla y León. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

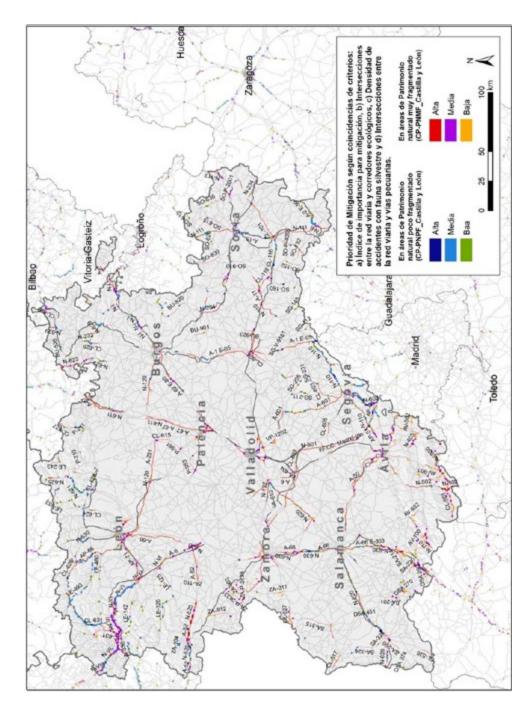


Figura 55. Castilla y León. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 51) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 52) y/o accidentes con fauna silvestre (Figura 53). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 54). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

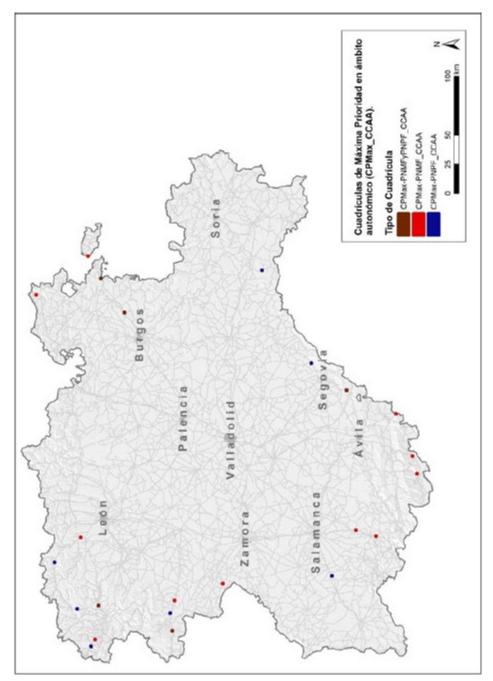


Figura 56. Castilla y León. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 55), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 52) y, c) Accidentes con fauna silvestre (Figura 53). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 54). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP $_{\rm Max}$ PNMF $_{\rm CC.AA.}$), en Patrimonio Natural Poco Fragmentado (CP $_{\rm Max}$ PNP- $_{\rm CC.AA.}$) y aquellas que han resultado de máxima prioridad en ambos escenarios (CP $_{\rm Max}$ PNMFyPNPF $_{\rm CCAA}$).

Tabla 21. Cuadrículas de máxima prioridad a desfragmentar en Castilla y León. Se indican con un * las cuadrículas que también han resultado de máxima prioridad a nivel estatal.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	29TPG8956	9
	29TQH0620	8
	30TUL9712	8
	30TVN6301	8
	30TVN9221	7
	30TTN7238	9
	30TUK7770*	9
	29TQG1556	8
	29TQG3216	8
	30TTK7387	8
CP _{Max} PNMF _{CC.AA.}	30TTL7804	8
	30TUK4156	8
	30TVN7876	8
	30TWN1132	8
	29TPH7721	7
	30TUK2652*	6
CP _{Max} PNPF _{CC.AA} .	29TQG0459*	10
	29TPH7124	8
	29TQH4060	8
	30TVL2042*	8
	30TVL9984	8
	29TQF4524	7
	29TQH0238	7

2.4.7 Cataluña/Catalunya

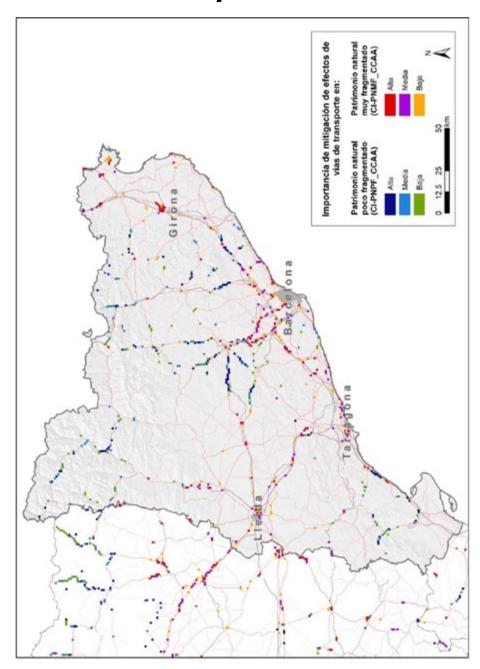


Figura 57. Cataluña/ Catalunya. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 329). Esta selección refleja por tanto las áreas más importantes en Cataluña independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

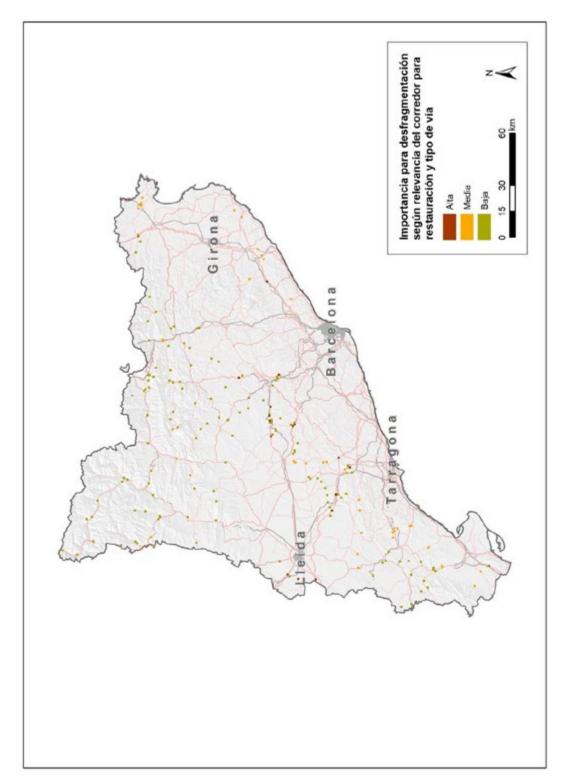


Figura 58. Cataluña / Catalunya. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

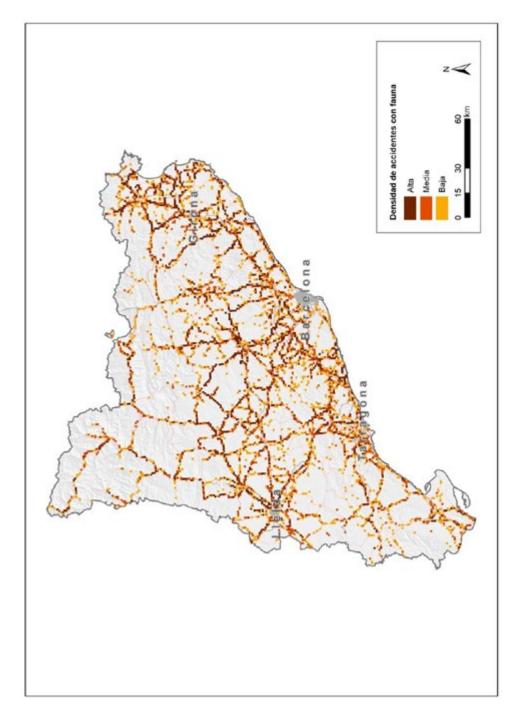


Figura 59. Cataluña/ Catalunya. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (4748 cuadrículas en total en Cataluña). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos de la Generalitat de Cataluña entre los años 2018-2021. A diferencia de las demás CC. AA. en Cataluña no ha sido posible discriminar el tipo de fauna (silvestre/doméstica) implicada en el accidente. Véase el Epígrafe 2.3.1.2 para detalles sobre metodología.

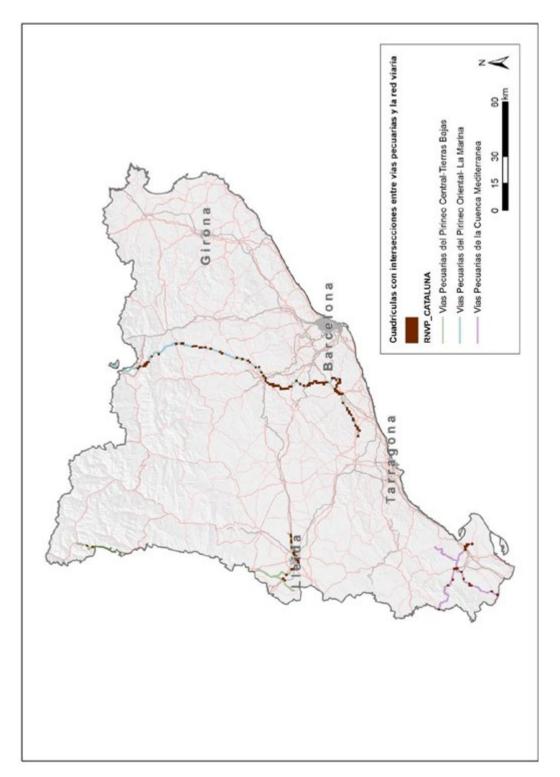


Figura 60. Cataluña/ Catalunya. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

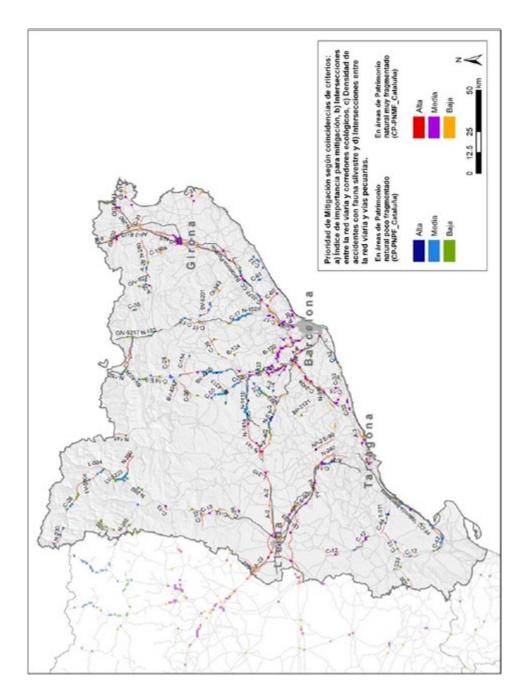


Figura 61. Cataluña/ Catalunya. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 57) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 58) y/o accidentes con fauna silvestre (Figura 59). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 60). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

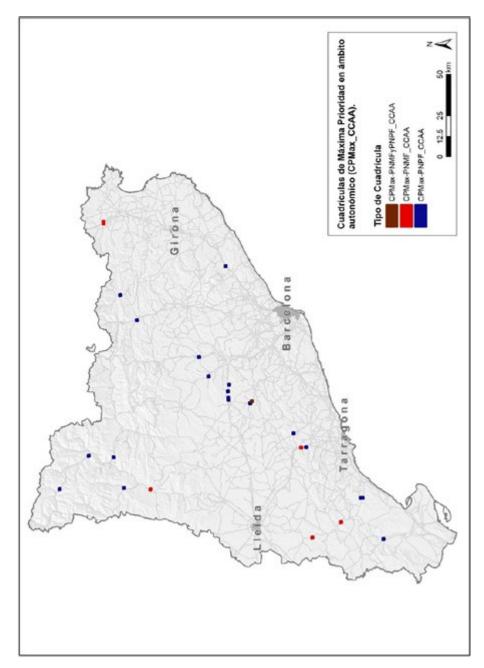


Figura 62. Cataluña/Catalunya. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 61), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 58) y, c) Accidentes con fauna silvestre (Figura 59). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 60). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado ($\text{CP}_{\text{Max}}\text{PNMF}_{\text{CC.AA}}$), en Patrimonio Natural Poco Fragmentado ($\text{CP}_{\text{Max}}\text{PNPF}_{\text{CC.AA}}$) y aquellas que han resultado de máxima prioridad en ambos escenarios ($\text{CP}_{\text{Max}}\text{PNMFyPNPF}_{\text{CCAA}}$).

Tabla 22. Cuadrículas de máxima prioridad a desfragmentar en Cataluña/ Catalunya.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	31TCG7707	9
	31TDG9189	9
	31TCF4779	8
	31TDG9289	7
CP _{Max} PNMF _{CC.AA.}	31TBF9276	5
	31TCG2872	5
	31TCF0058	4
	31TCF5683	9
	31TCG7608	9
	31TCG8021	9
	31TDG0637	9
	31TCF1444	8
	31TCG8820	8
	31TDG6017	8
	31TCH5108	6
	31TDG3173	6
CP _{Max} PNPF _{CC.AA.}	31TCF1445	5
	31TCF4776	5
	31TCG4993	5
	31TCG7921	5
	31TCG8421	5
	31TCG9432	5
	31TDG4782	5
	31TBF8833	4
	31TCG3088	4
	31TCH3227	4

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado. $CP_{Max}PNMFyPNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy y poco fragmentado.

2.4.8 Comunidad de Madrid

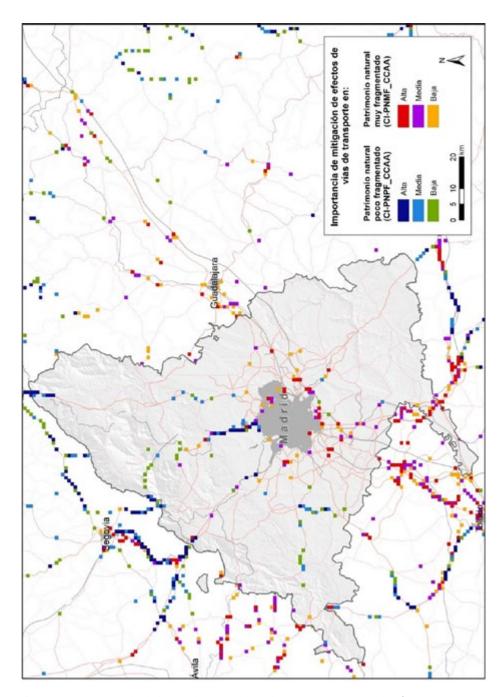


Figura 63. Comunidad de Madrid. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 85). Esta selección refleja por tanto las áreas más importantes en la Comunidad de Madrid independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

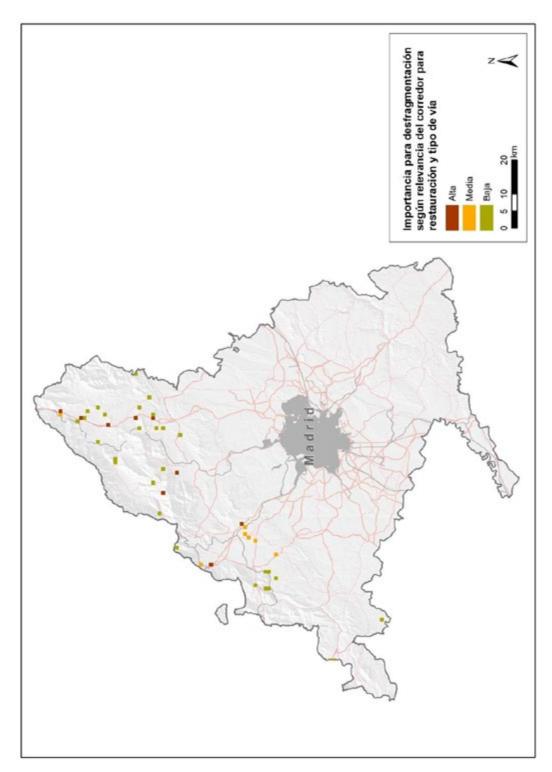


Figura 64. Comunidad de Madrid. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

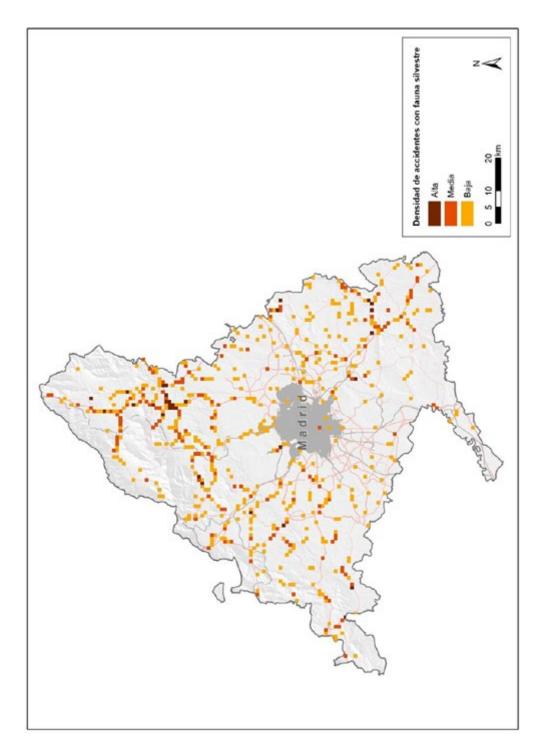


Figura 65. Comunidad de Madrid. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (632 cuadrículas en total en la Comunidad de Madrid). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

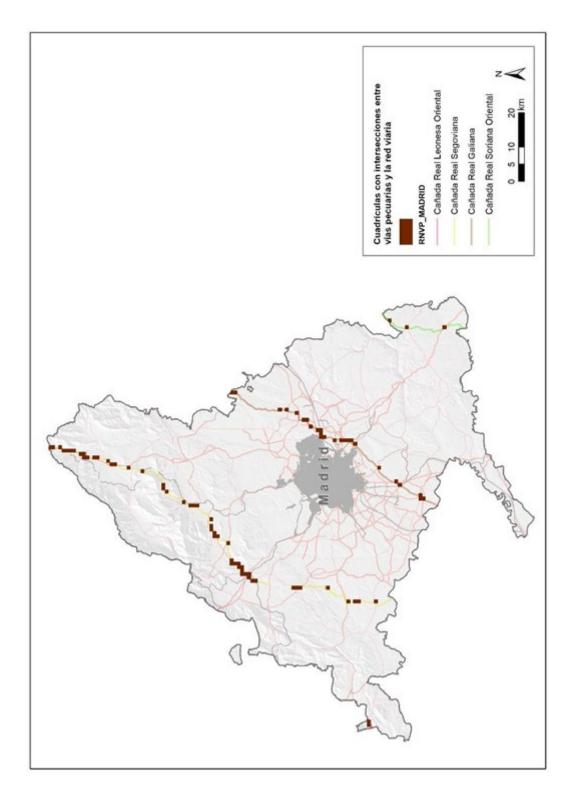


Figura 66. Comunidad de Madrid. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

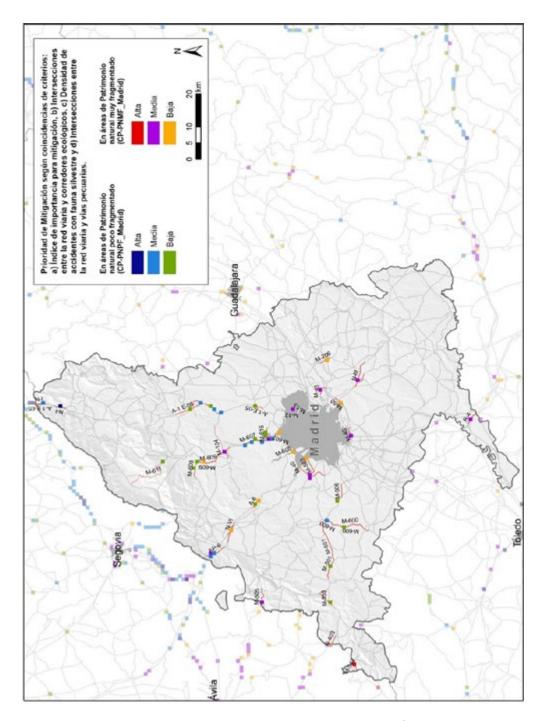


Figura 67. Comunidad de Madrid. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 63) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 64) y/o accidentes con fauna silvestre (Figura 65). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 66). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

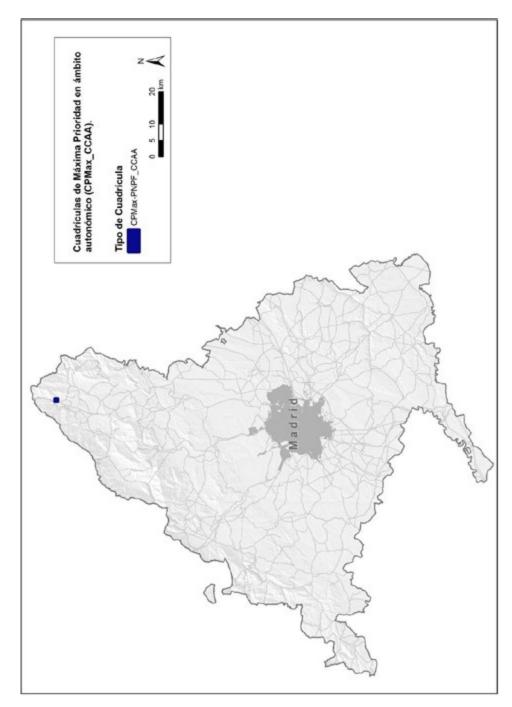


Figura 68. Comunidad de Madrid. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 67), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 64) y, c) Accidentes con fauna silvestre (Figura 65). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 66). Se muestra la cuadrícula identificada en el escenario de Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA}.).

Tabla 23. Cuadrícula de máxima prioridad a desfragmentar en Madrid. El * indica que esta cuadrícula también ha resultado de máxima prioridad a nivel estatal.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNPF _{CC.AA.}	30TVL5049*	9

Donde: $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.9 Comunidad Foral de Navarra

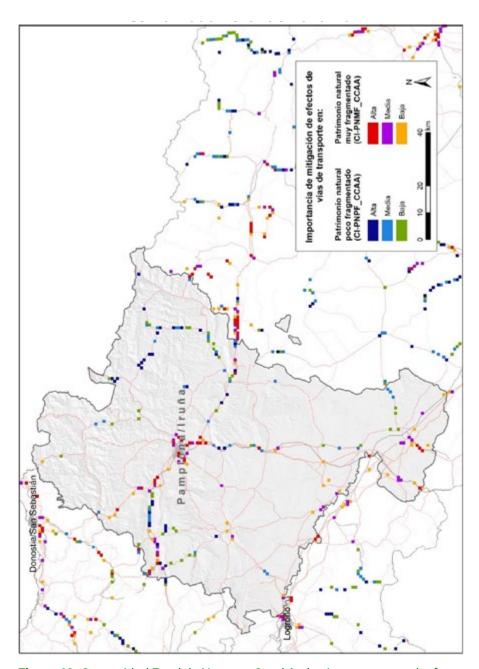


Figura 69. Comunidad Foral de Navarra. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 108). Esta selección refleja por tanto las áreas más importantes en la Comunidad Foral de Navarra independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

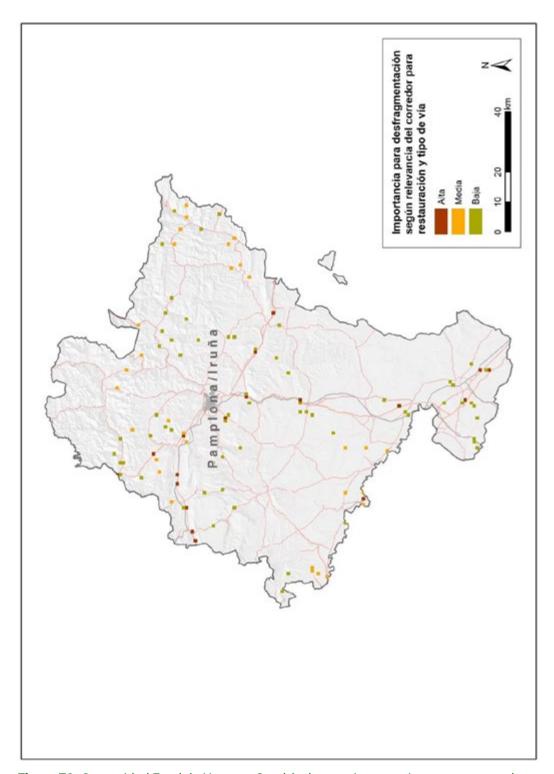


Figura 70. Comunidad Foral de Navarra. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

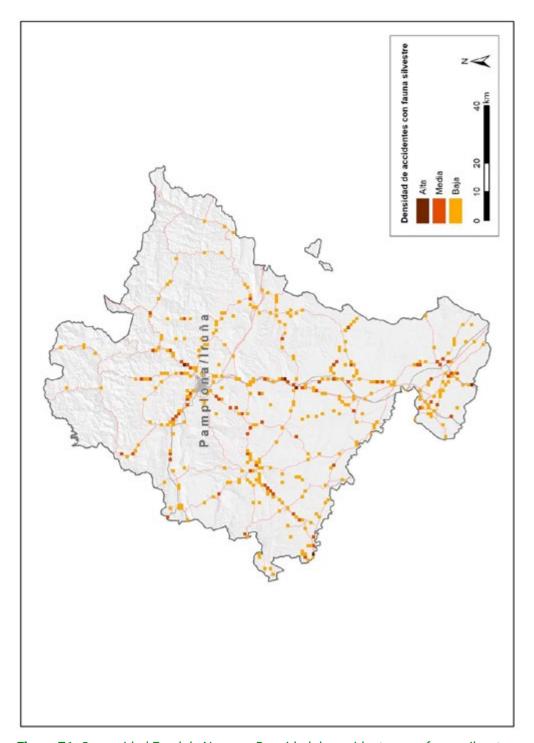


Figura 71. Comunidad Foral de Navarra. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (417 cuadrículas en total en Navarra). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

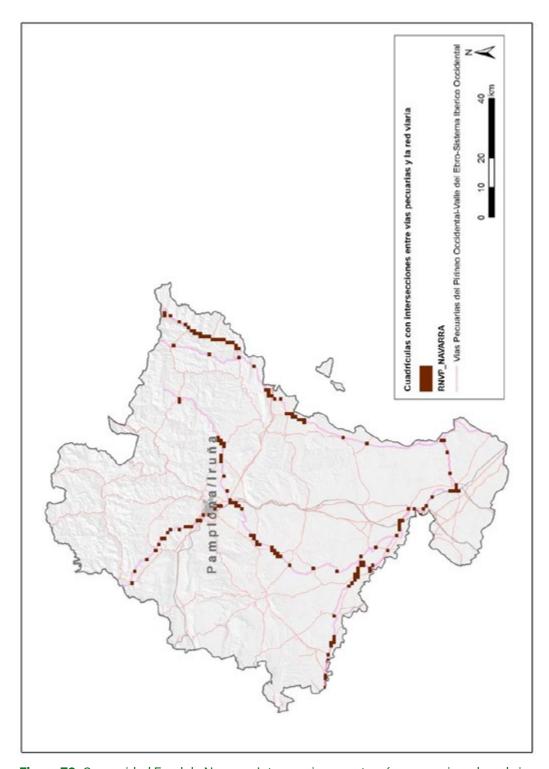


Figura 72. Comunidad Foral de Navarra. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

Figura 73. Comunidad Foral de Navarra. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 69) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 70) y/o accidentes con fauna silvestre (Figura 71). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 72). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

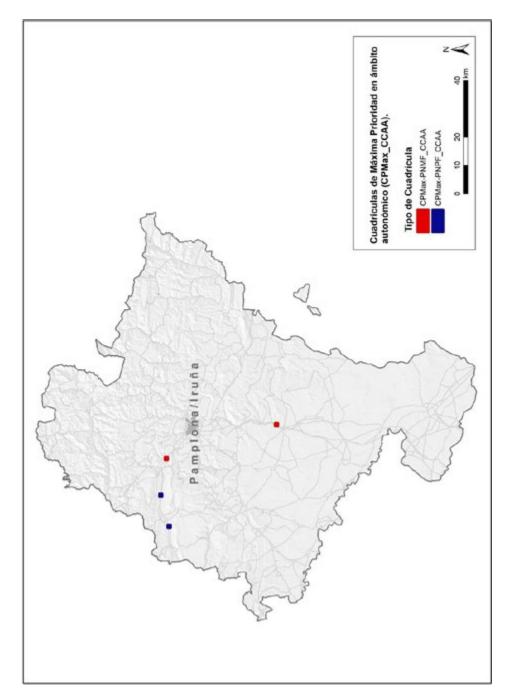


Figura 74. Comunidad Foral de Navarra. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 73), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 70) y, c) Accidentes con fauna silvestre (Figura 71). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 72). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA.}) y en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA.}).

Tabla 24. Cuadrículas de máxima prioridad a desfragmentar en la Comunidad Foral de Navarra.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.}	31TCG7707	9
	31TDG9189	9
CP _{Max} PNPF _{CC.AA.}	31TCF4779	8
	31TDG9289	7

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.10 Comunitat Valenciana

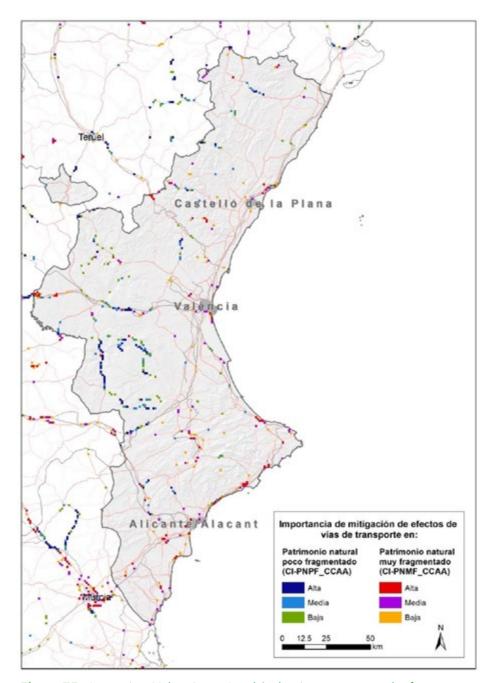


Figura 75. Comunitat Valenciana. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 242). Esta selección refleja por tanto las áreas más importantes en la Comunitat Valenciana independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

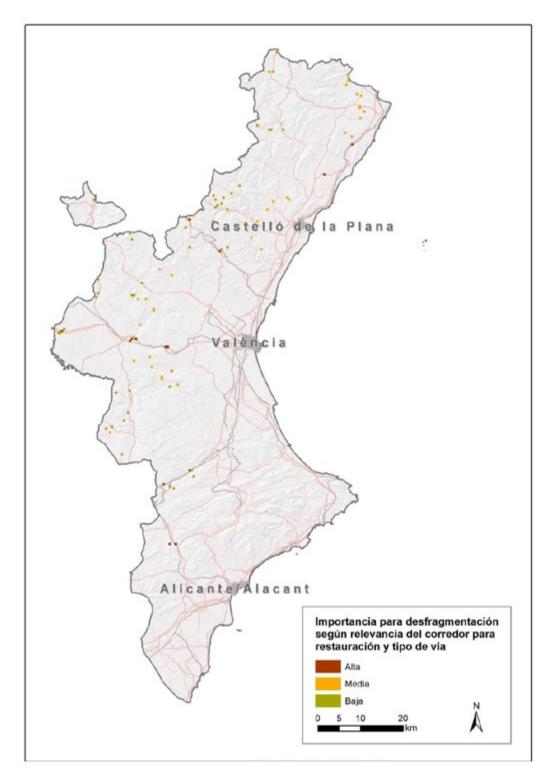


Figura 76. Comunitat Valenciana. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase el epígrafe 2.3.1.1 y Anexo II para detalles de la metodología.

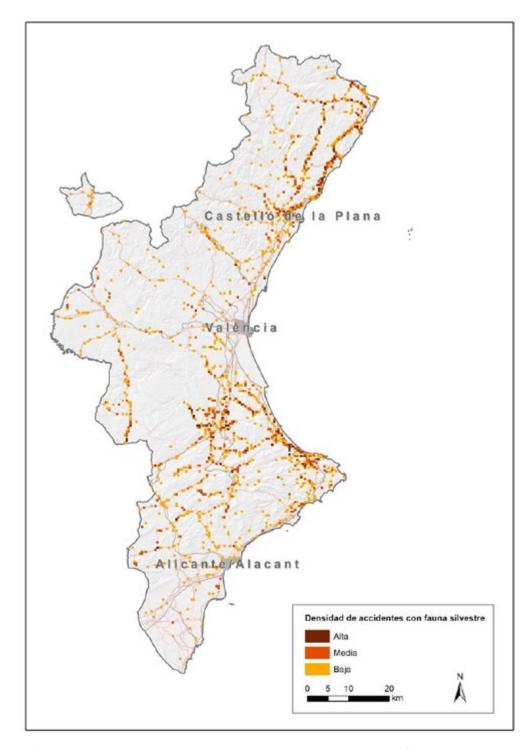


Figura 77. Comunitat Valenciana. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (1.477 cuadrículas en total en Comunitat Valenciana). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase el epígrafe 2.3.1.2 para detalles de la metodología.

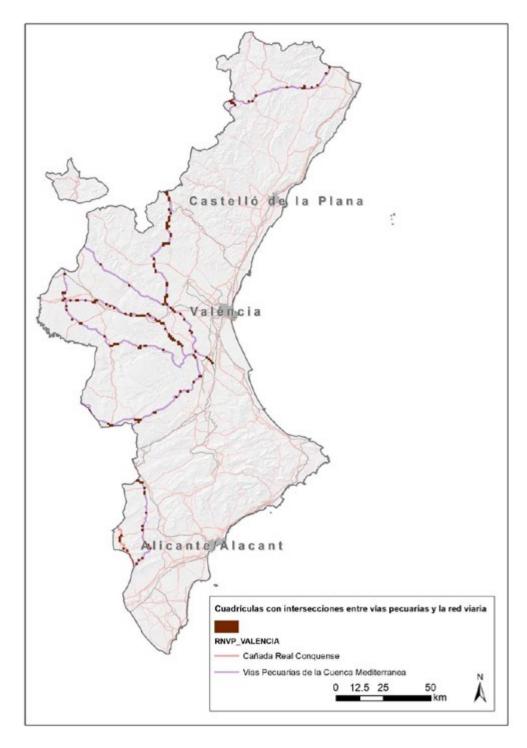


Figura 78. Comunitat Valenciana. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase el epígrafe 2.3.1.3 para detalles de la metodología.

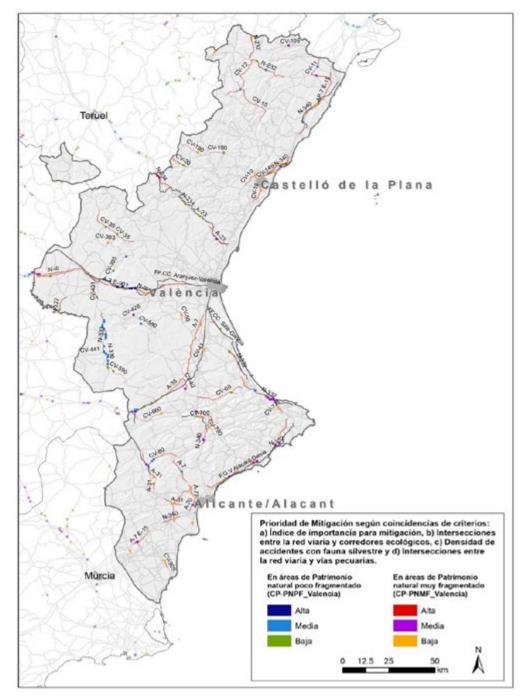


Figura 79. Comunitat Valenciana. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 75) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 76) y/o accidentes con fauna silvestre (Figura 77). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 78). Véase epígrafes 2.3.1 y 2.3.2 para detalles de la metodología.

Figura 80. Comunitat Valenciana. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 79), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 76) y, c) Accidentes con fauna silvestre (Figura 77). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 78). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA.}) y en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA.}).

Tabla 25. Cuadrículas de máxima prioridad a desfragmentar en la Comunitat Valenciana.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.}	31TBE7388	6
CP _{Max} PNPF _{CC.AA.}	31TBE7493	5

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.11 Extremadura

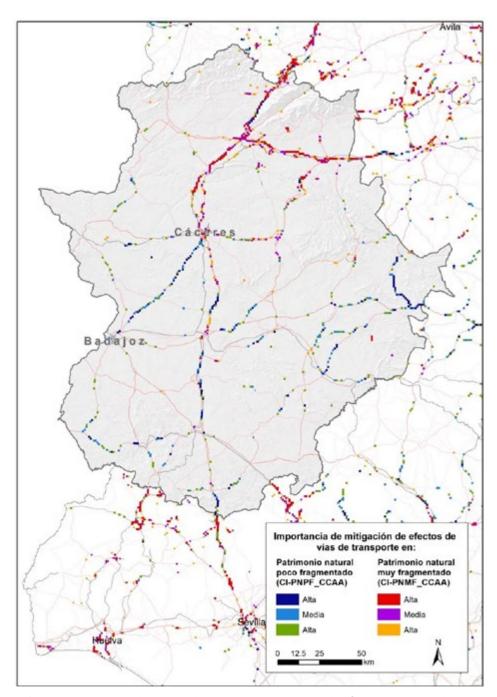


Figura 81. Extremadura. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 427). Esta selección refleja por tanto las áreas más importantes en Extremadura independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

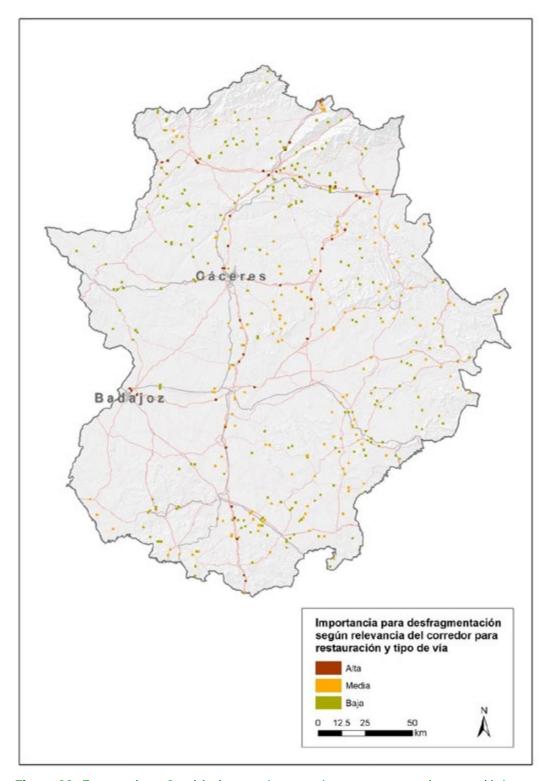


Figura 82. Extremadura. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase el epígrafe 2.3.1.1 y Anexo II para detalles de la metodología.

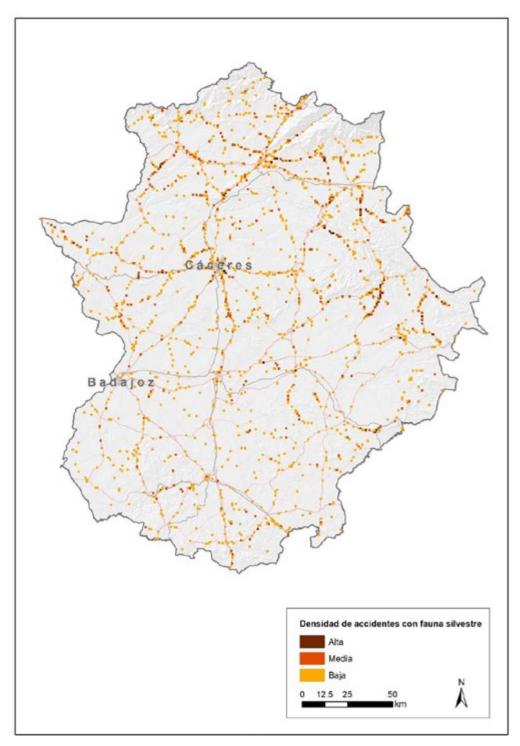


Figura 83. Extremadura. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (1.696 cuadrículas en total en Extremadura). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

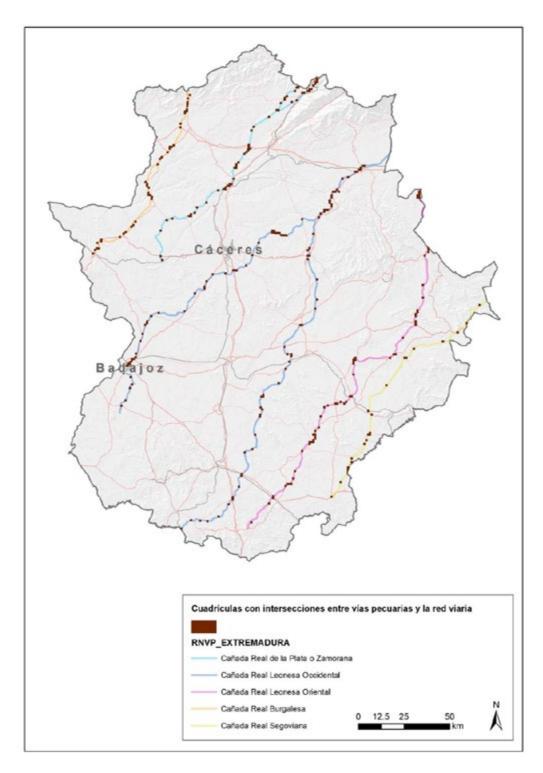


Figura 84. Extremadura. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

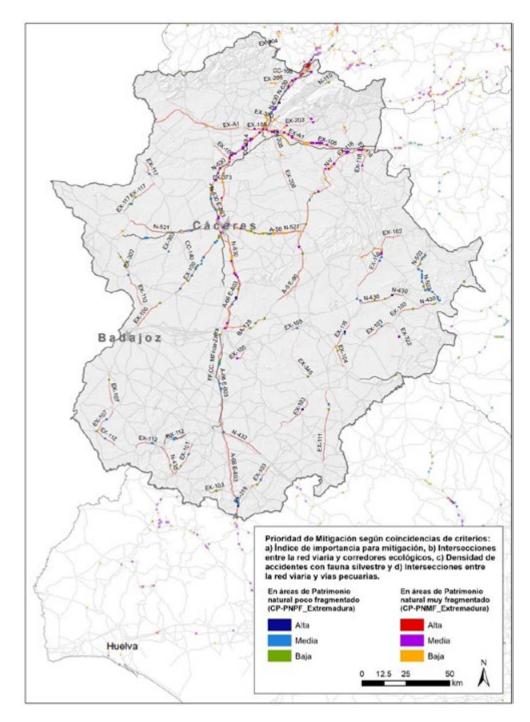


Figura 85. Extremadura. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 81) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 82) y/o accidentes con fauna silvestre (Figura 83). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 84). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

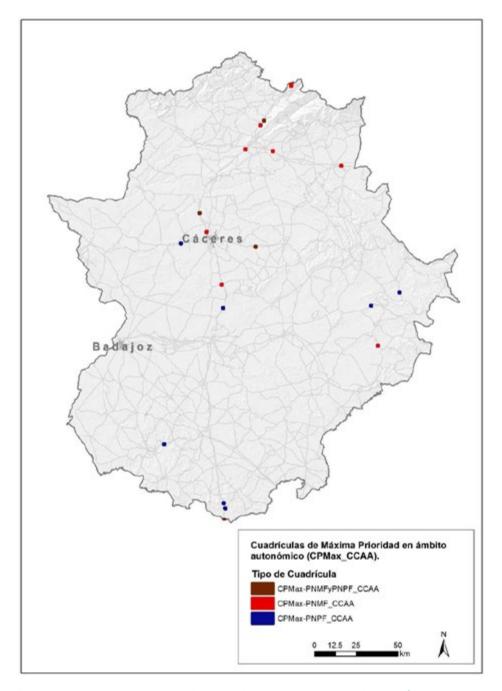


Figura 86. Extremadura. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 85), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 82) y, c) Accidentes con fauna silvestre (Figura 83). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 84). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA.}), en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA.}) y aquellas que han resultado de máxima prioridad en ambos escenarios (CP_{Max}P-NMFyPNPF_{CC.AA.}).

Tabla 26. Cuadrículas de máxima prioridad a desfragmentar en Extremadura. Se indican con un * las cuadrículas que también han resultado de máxima prioridad a nivel estatal.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	29SQC4304	7
	29TQE5145	7
	29SQD5169	6
	29SQD1687	5
	30STK4527	8
	30STK8618	8
	30TTK5667	8
	30TTK5666*	7
CP _{Max} PNMF _{CC.AA.}	29SQD2176	6
	29SQD3245	6
	29SQE4127	6
	29TQE4942	4
	30SUJ0810	4
CP _{Max} PNPF _{CC.AA.}	29SQC4214	7
	29SQC4311	7
	29SQD3431	7
	30SUJ0434	7
	29SQC0447	5
	30SUJ2142	5
	29SQD0668	4

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado. $CP_{Max}PNMFyPNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy y poco fragmentado.

2.4.12 Galicia

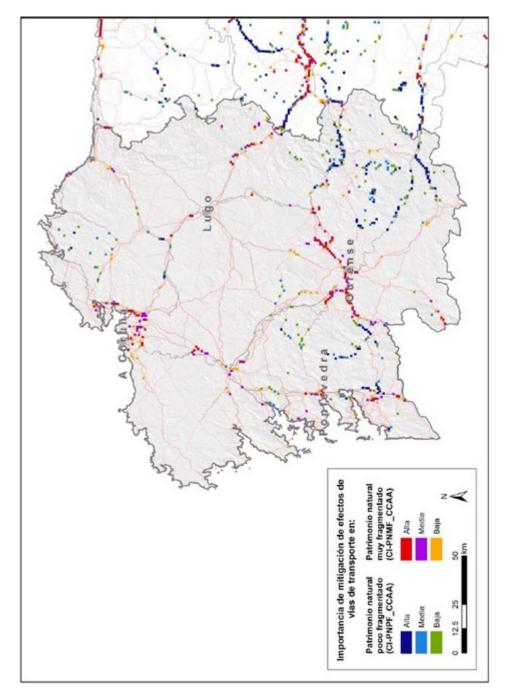


Figura 87. Galica. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 307). Esta selección refleja por tanto las áreas más importantes en Galicia independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

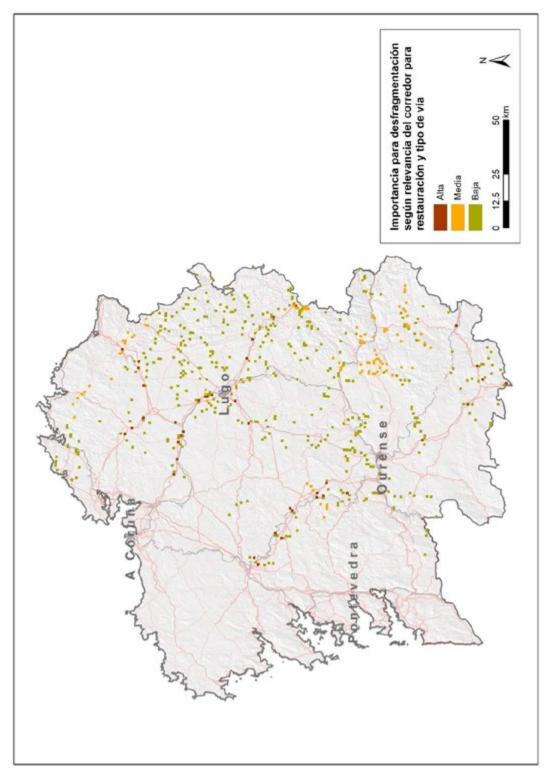


Figura 88. Galicia. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

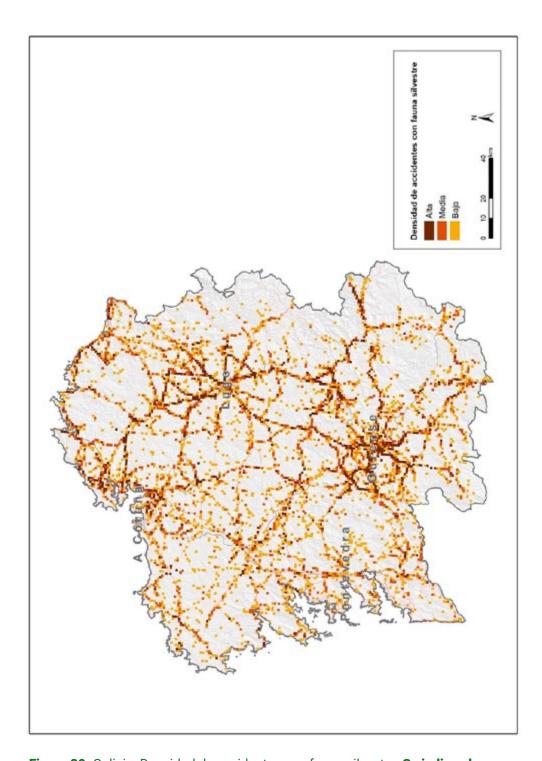


Figura 89. Galicia. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (5258 cuadrículas en total en Galicia). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

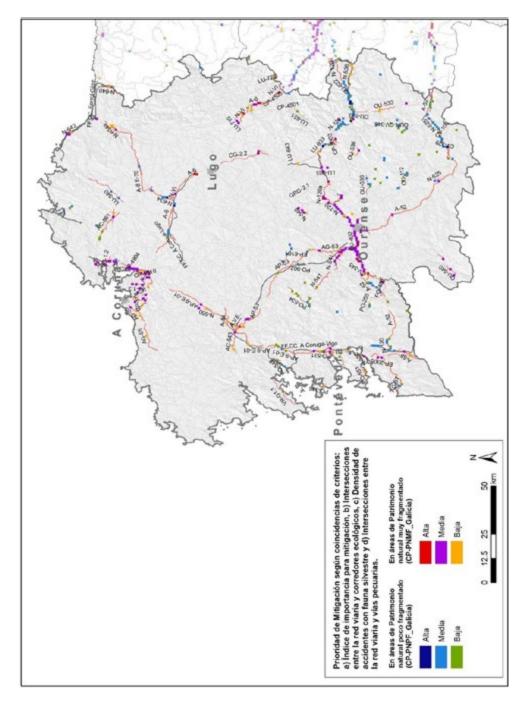


Figura 90. Galicia. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 87) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 88) y/o accidentes con fauna silvestre (Figura 89). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias. En este caso no hay vías pecuarias en la Comunidad Autónoma. Véase epígrafes 2.3.1 y 2.3.2 para detalles de la metodología.

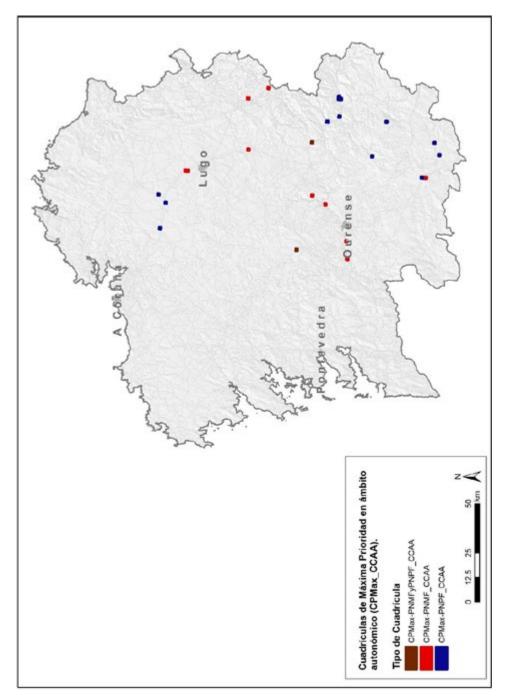


Figura 91. Galicia. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 90), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 88) y, c) Accidentes con fauna silvestre (Figura 89). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado ($CP_{Max}PNMF_{CC.AA.}$), en Patrimonio Natural Poco Fragmentado ($CP_{Max}PNP-F_{CC.AA.}$) y aquellas que han resultado de máxima prioridad en ambos escenarios ($CP_{Max}PNMFyPNPF_{CCAA}$).

Tabla 27. Cuadrículas de máxima prioridad a desfragmentar en Galicia.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
OD DAIME WOD DAIDE	29TNH7912	7
CP _{Max} PNMF _{CC.AA.} y CP _{Max} PNPF _{CC.AA.}	29TPH3408	7
	29TNG8587	8
	29TPH1570	8
	29TPH5442	8
	29TPH6032	8
CD DNIME	29TNG7686	7
CP _{Max} PNMF _{CC.AA.}	29TPH0706	7
	29TPH1571	7
	29TPH2840	7
	29TPG2049	6
	29TPG0399	5
	29TPG3846	9
	29TPH0284	9
	29TNH9880	8
	29TPG4895	8
	29TPG5796	8
	29TPG5896	8
CP _{Max} PNPF _{CC.AA} .	29TNH8582	6
	29TPG2051	6
	29TPG3243	6
	29TPG4771	6
	29TPG5795	6
	29TPH4501	6
	29TPG2977	4

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado. $CP_{Max}PNMFyPNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy y poco fragmentado.

2.4.13 Illes Balears

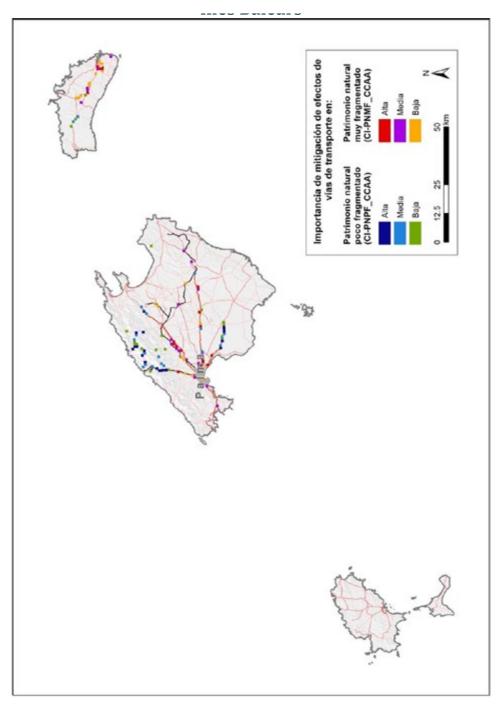


Figura 92. Illes Balears. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 56). Esta selección refleja por tanto las áreas más importantes en Illes Balears independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

2.4.14 La Rioja

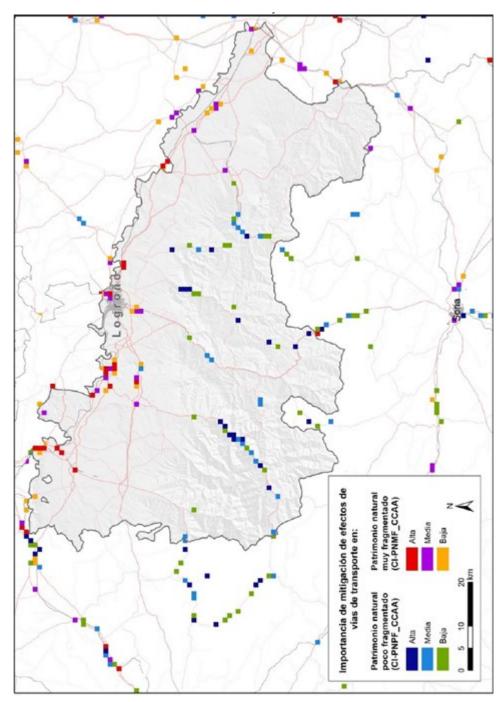


Figura 93. La Rioja. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 54). Esta selección refleja por tanto las áreas más importantes en La Rioja independientemente del resto del Estado. Véase el Epígrafe 2.2 para detalles sobre metodología.

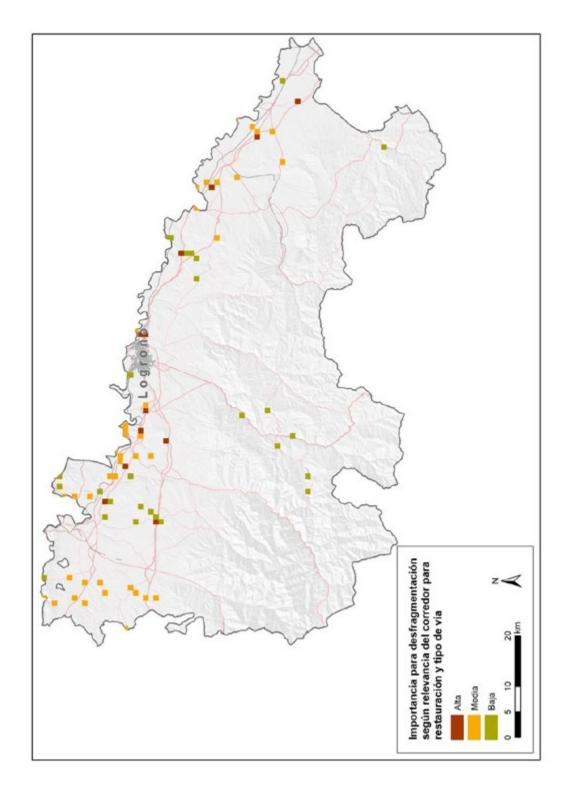


Figura 94. La Rioja. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

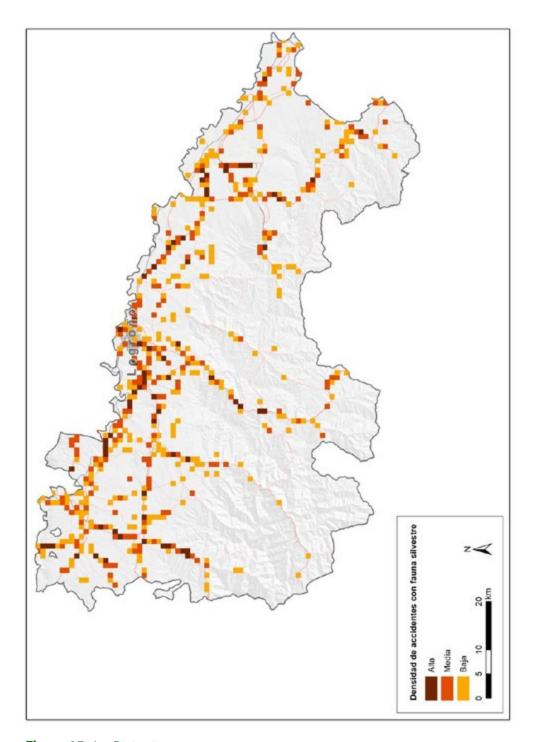


Figura 95. La Rioja. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (583 cuadrículas en total en La Rioja). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase epígrafe 2.3.1.2 para detalles sobre metodología.

150

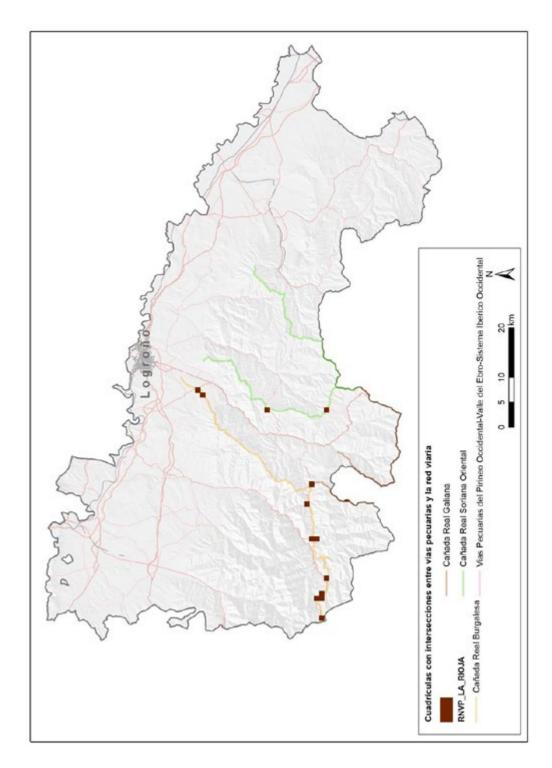


Figura 96. La Rioja. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase epígrafe 2.3.1.3 para detalles sobre metodología.

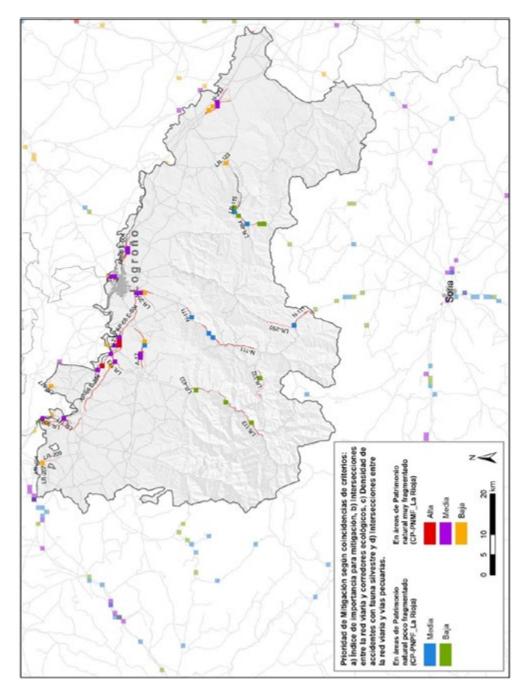


Figura 97. La Rioja. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 93) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 94) y/o accidentes con fauna silvestre (Figura 95). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 96). Véase Epígrafes 2.3.1 y 2.3.2 para detalles sobre metodología.

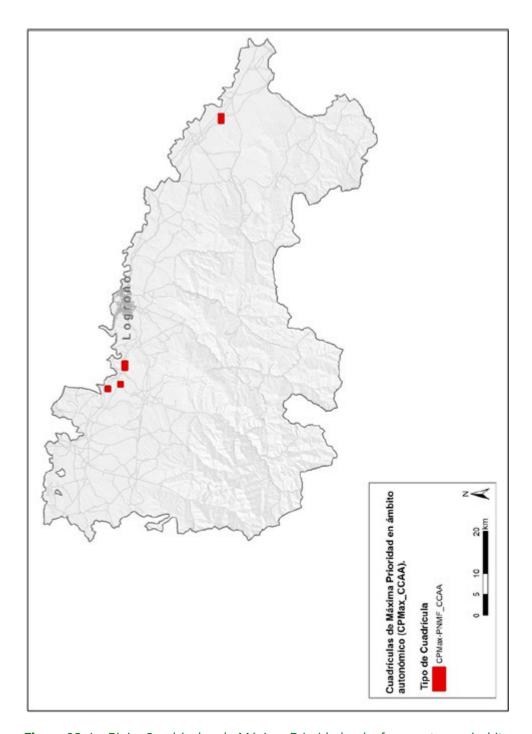


Figura 98. La Rioja. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km2 donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 97), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 94) y, c) Accidentes con fauna silvestre (Figura 95). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 96). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA.}).

Tabla 28. Cuadrículas de máxima prioridad a desfragmentar en La Rioja.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.}	30TWN3101	9
	30TWN2505	8
	30TWN3001	7
	30TWM8978	6
	30TWM9078	6
	30TWN2602	5

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado.

2.4.15 País Vasco/Euskadi

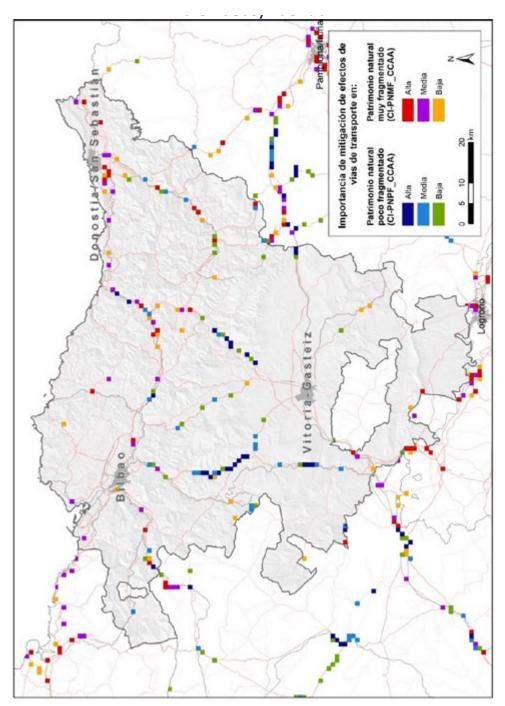


Figura 99. País Vasco/ Euskadi. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 77). Esta selección refleja por tanto las áreas más importantes en el País Vasco independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

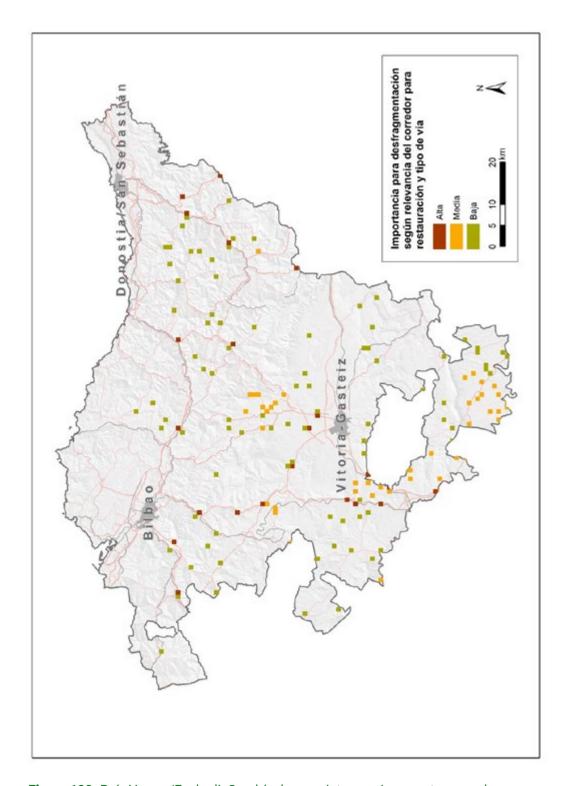


Figura 100. País Vasco /Euskadi. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase Epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología.

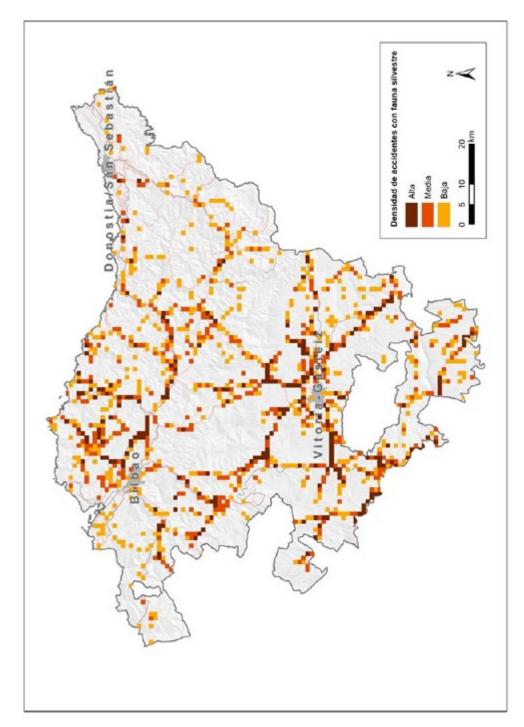


Figura 101. País Vasco /Euskadi. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (1.213 cuadrículas en total en País Vasco). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la dase de datos del Área de Estudios y Estadísticas de la Dirección de Tráfico del Gobierno Vasco entre los años 2018-2021. Véase el epígrafe 2.3.1.2 para detalles de la metodología.

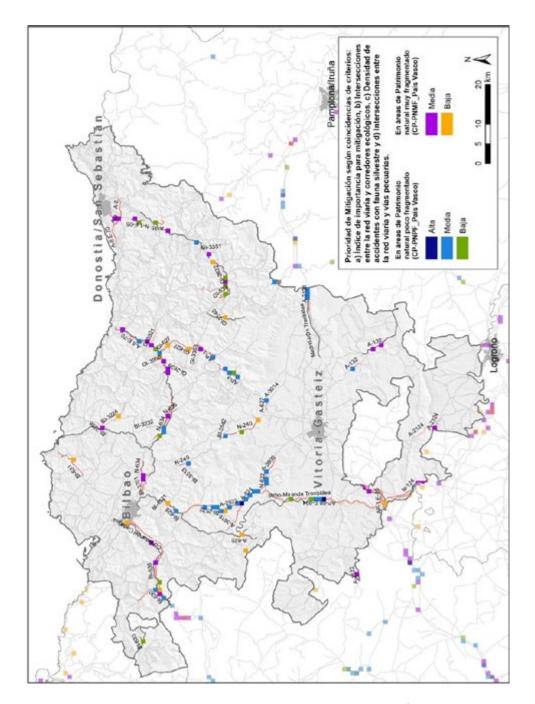


Figura 102. País Vasco/ Euskadi. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 99) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 100) y/o accidentes con fauna silvestre (Figura 101). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias. En este caso no hay vías pecuarias en la Comunidad Autónoma. Véase epígrafes 2.3.1 y 2.3.2 para detalles de la metodología.

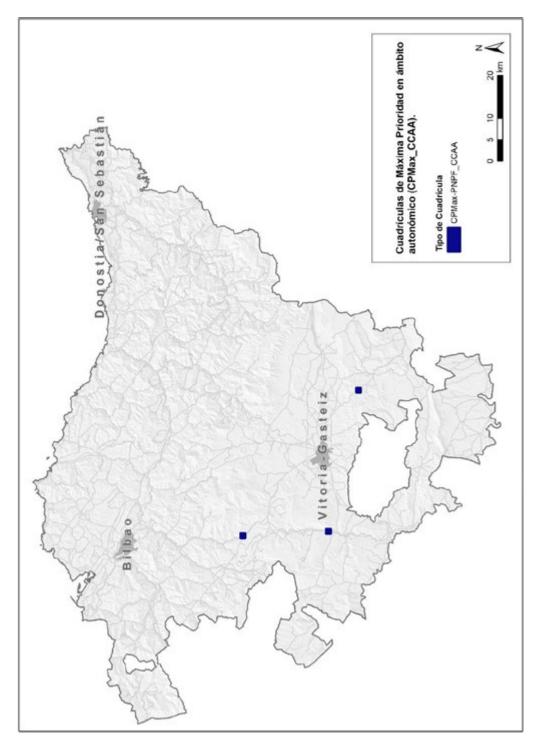


Figura 103. País Vasco/Euskadi. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 102), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 100) y, c) Accidentes con fauna silvestre (Figura 101). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Poco Fragmentado (CP_{Max} PNP- $F_{CC.AA}$).

Tabla 29. Cuadrículas de máxima prioridad a desfragmentar en el País Vasco/Euskadi.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNPF _{CC.AA.}	30TWN0762	9
	30TWN0842	8
	30TWN4135	6

Donde: $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.16 Principado de Asturias

Figura 104. Principado de Asturias. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 111). Esta selección refleja por tanto las áreas más importantes en el Principado de Asturias independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

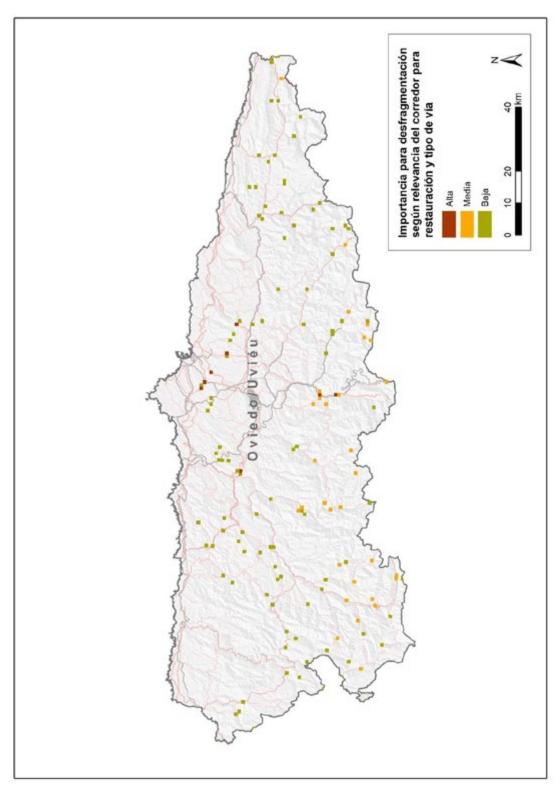


Figura 105. Principado de Asturias. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. Véase el epígrafe 2.3.1.1 y Anexo II para detalles de la metodología.

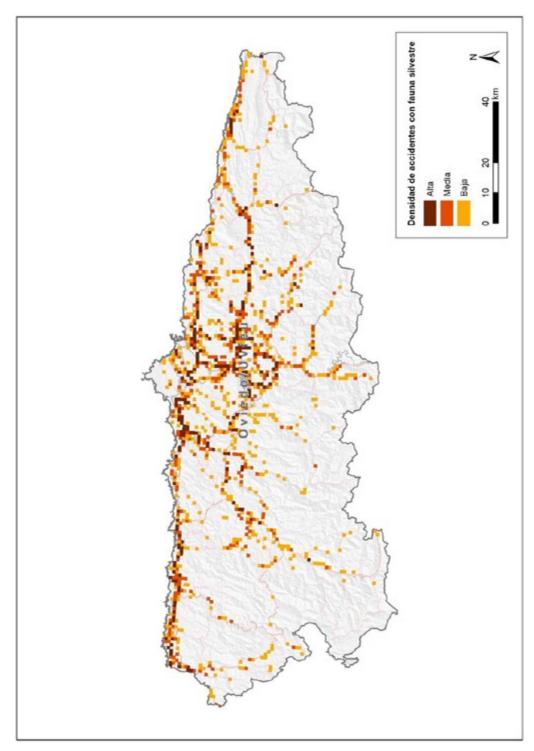


Figura 106. Principado de Asturias. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (1.191 cuadrículas en total en Asturias). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase el epígrafe 2.3.1.2 para detalles de la metodología.

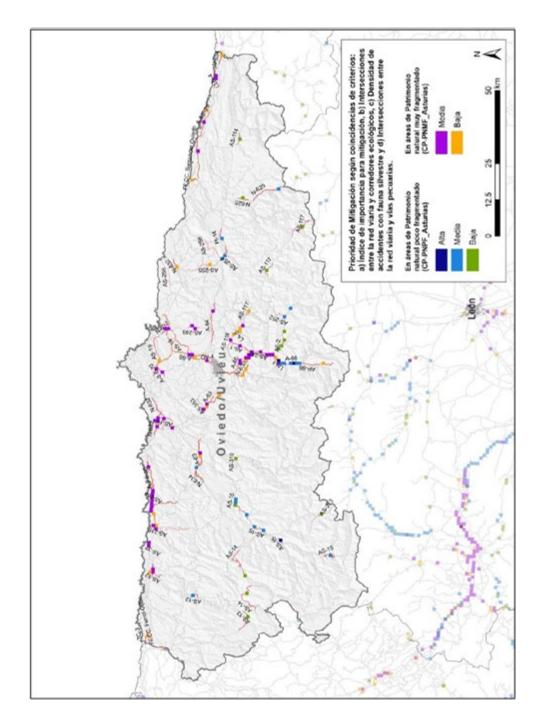


Figura 107. Principado de Asturias. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 104) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 105) y/o accidentes con fauna silvestre (Figura 106). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias. En este caso no hay vías pecuarias en la Comunidad Autónoma. Véase epígrafes 2.3.1 y 2.3.2 para detalles de la metodología.

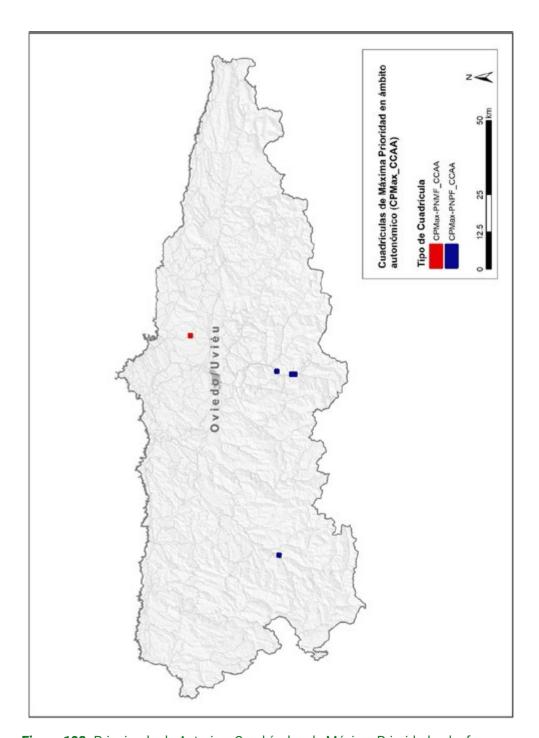


Figura 108. Principado de Asturias. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 107), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 105) y, c) Accidentes con fauna silvestre (Figura 106). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CP_{Max}PNMF_{CC.AA.}), en Patrimonio Natural Poco Fragmentado (CP_{Max}PNPF_{CC.AA.}).

Tabla 30. Cuadrículas de máxima prioridad a desfragmentar en el Principado de Asturias.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNMF _{CC.AA.}	30TTP8313	7
CP _{Max} PNPF _{CC.AA.}	29TPH9780	7
	30TTN7079	7
	30TTN7184	7
	30TTN7078	5

Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado. $CP_{Max}PNPF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural poco fragmentado.

2.4.17 Región de Murcia

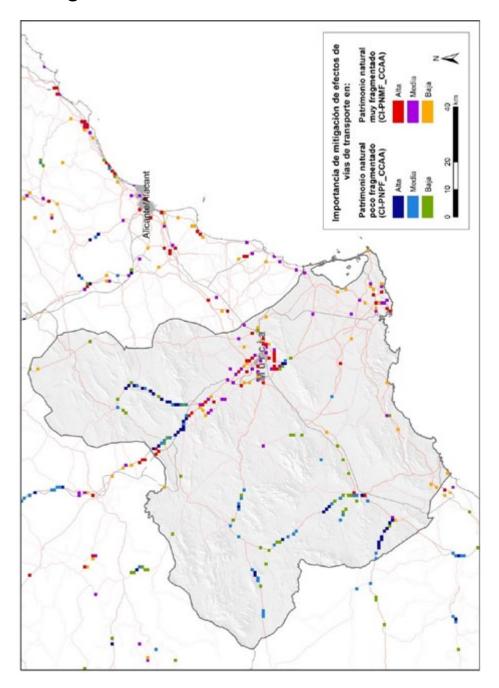


Figura 109. Región de Murcia. Cuadrículas importantes a desfragmentar en el ámbito autonómico. Se ha seleccionado en cada Comunidad Autónoma el 1% del total de cuadrículas UTM de 1 km² con mayor valor en cada uno de los dos índices de importancia de mitigación de los efectos de vías de transporte (en total en ésta 117). Esta selección refleja por tanto las áreas más importantes en la Región de Murcia independientemente del resto del Estado. Véase el epígrafe 2.2 para detalles de la metodología.

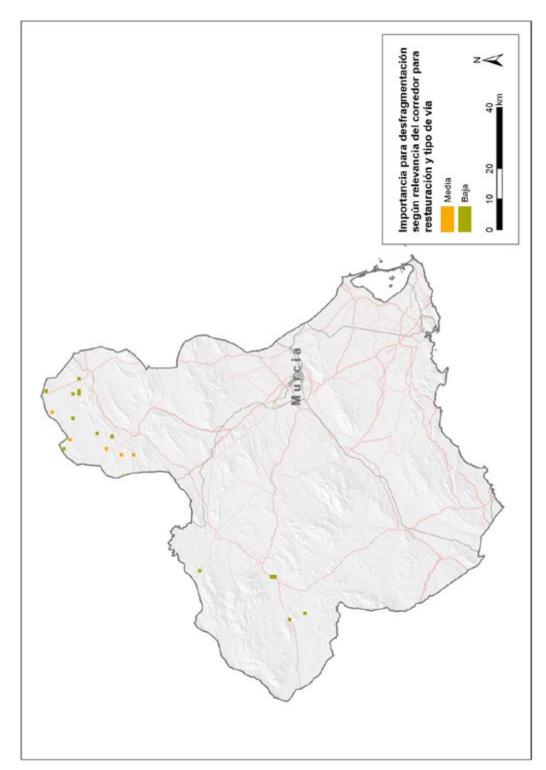


Figura 110. Región de Murcia. Cuadrículas con intersecciones entre corredores ecológicos e infraestructuras viarias. El valor de la cuadrícula es función de la importancia de los corredores para restauración y del tipo de vía implicados en las intersecciones. En este caso no hay cuadrículas de alta importancia. Véase el epígrafe 2.3.1.1 y Anexo II para detalles de la metodología.

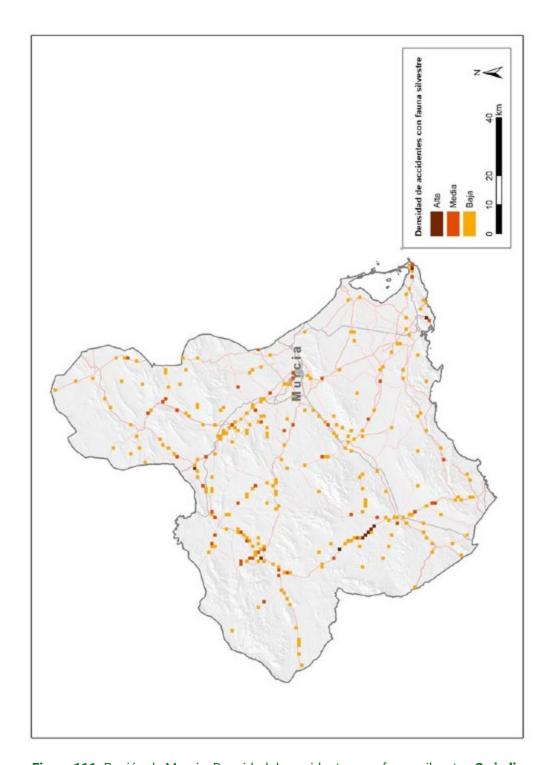


Figura 111. Región de Murcia. Densidad de accidentes con fauna silvestre. Se indican las cuadrículas UTM de 1 km² donde se han registrado accidentes con fauna silvestre (306 cuadrículas en total en la Región de Murcia). Las cuadrículas se clasifican según la densidad de este tipo de siniestralidad (número de accidentes/km²). Los registros corresponden a los de la base de datos ARENA 2 (DGT) entre los años 2018-2021. Véase el epígrafe 2.3.1.2 para detalles de la metodología.

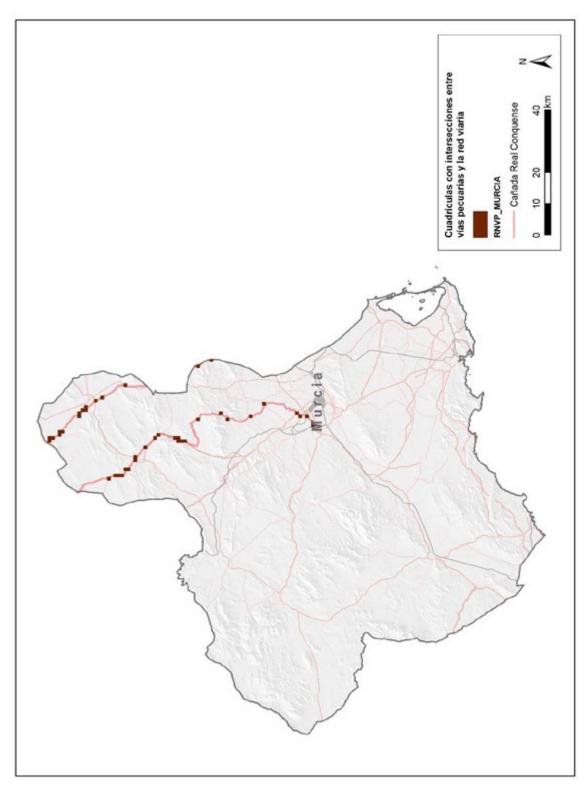


Figura 112. Región de Murcia. Intersecciones entre vías pecuarias y la red viaria. Se indican las cuadrículas UTM de 1 km² donde se han identificado intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias (RNVP). Véase el epígrafe 2.3.1.3 para detalles de la metodología.

Figura 113. Región de Murcia. Cuadrículas prioritarias a desfragmentar en el ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden áreas importantes a desfragmentar en ámbito autonómico (Figura 109) y/o intersecciones entre la red viaria y corredores ecológicos (Figura 110) y/o accidentes con fauna silvestre (Figura 111). Se han clasificado en tres categorías que reflejan número de coincidencias (2 o 3 criterios) e importancia de cada una de las variables. Finalmente, dicha clasificación se ajusta a un nivel superior si coinciden en la cuadrícula, intersecciones entre la red viaria y vías pecuarias (Figura 112). Véase epígrafes 2.3.1 y 2.3.2 para detalles de la metodología.

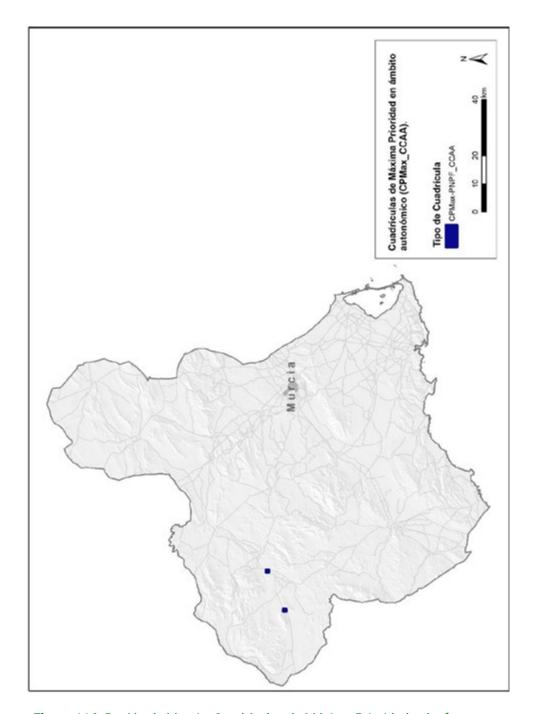
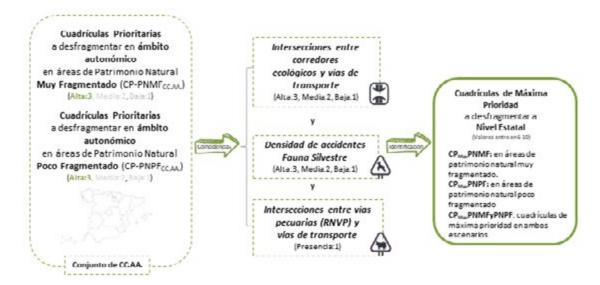


Figura 114. Región de Murcia. Cuadrículas de Máxima Prioridad a desfragmentar en ámbito autonómico. Se indican las cuadrículas UTM de 1 km² donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría media y alta (Figura 113), b) Intersecciones entre la red viaria y corredores ecológicos (Figura 110) y, c) Accidentes con fauna silvestre (Figura 111). El valor final de la cuadrícula se ajusta a un nivel superior si en ella coinciden, además, intersecciones entre la red viaria y vías pecuarias (Figura 112). Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Poco Fragmentado ($\text{CP}_{\text{Max}}\text{PNPF}_{\text{Cc.AA.}}$).

Tabla 31. Cuadrículas de máxima prioridad a desfragmentar en la Región de Murcia.

Tipo Cuadrícula	Código Cuadrícula (Malla UTM 1x1 km)	Valor de Máxima Prioridad
CP _{Max} PNPF _{CC.AA.}	30SWH8408	4
	30SWH9814	4


Donde: $CP_{Max}PNMF_{CC.AA}$: Cuadrículas de Máxima prioridad a desfragmentar en el ámbito de las CCAA en áreas de patrimonio natural muy fragmentado.

2.5 Identificación de cuadrículas de máxima prioridad a nivel estatal

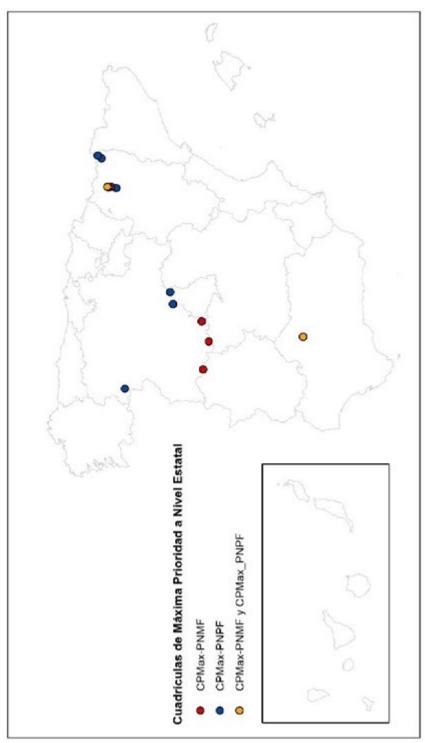
El procedimiento de filtrado progresivo de cuadrículas aplicado en ámbito autonómico ha permitido identificar un número factible de áreas de máxima prioridad para actuaciones de desfragmentación, ajustándose a los condicionantes locales de cada Comunidad Autónoma. En este caso, para que una cuadrícula se considere de máxima prioridad, debe cumplir las siguientes condiciones: ser una cuadrícula prioritaria para mitigación de los efectos de vías de transporte de categoría media-alta y en ella deben coincidir una o más intersecciones entre corredores ecológicos y la red viaria, así como registros de accidentes con fauna silvestre. Una

vez identificadas, el valor de estas cuadrículas se incrementa si en ellas existen intersecciones entre la Red Nacional de Vías Pecuarias y la red viaria.

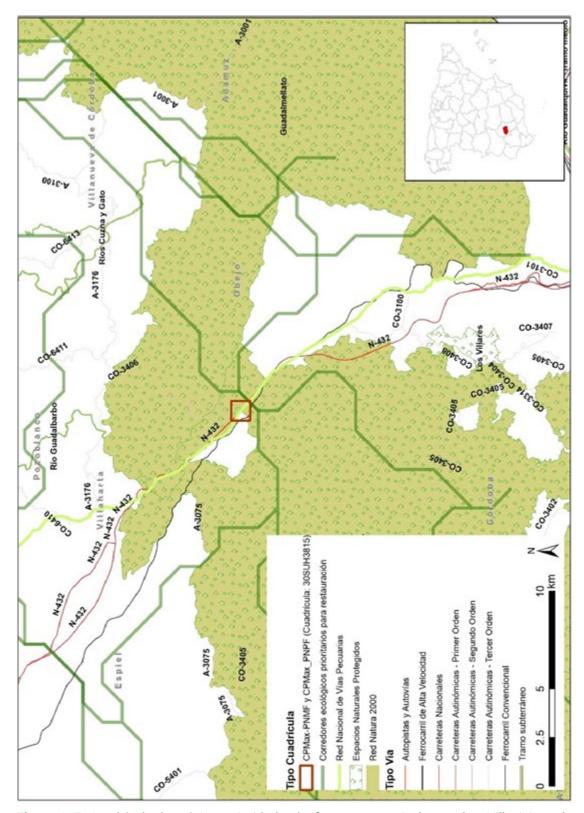
Para la identificación de **cuadrículas de Máxima Prioridad** a desfragmentar a nivel estatal se ha mantenido la lógica de incremento de requerimientos de los análisis de coincidencias. Así, para que una cuadrícula se clasifique como de máxima prioridad a nivel estatal, debe ser de alta prioridad en ámbito autonómico y en ella deben coincidir los tres criterios complementarios considerados: 1) Intersecciones entre corredores ecológicos y red viaria, 2) Accidentes con fauna silvestre y 3) Intersecciones entre vías pecuarias y red viaria (Figura 115).

Figura 115. Esquema del análisis de coincidencias para la identificación de cuadrículas de máxima prioridad a desfragmentar a nivel estatal.

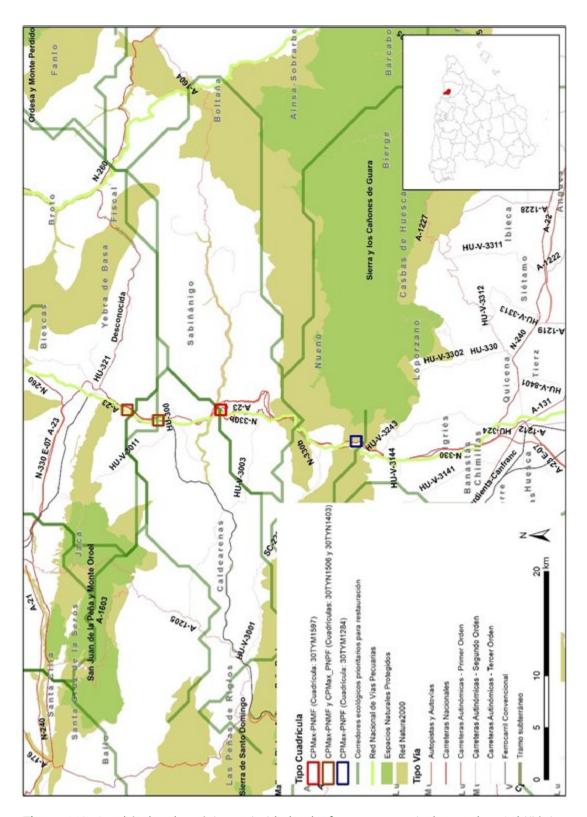
Finalmente, se han identificado 13 cuadrículas: 4 en áreas de patrimonio natural muy fragmentado (CP_{Max}PNMF), 6 en áreas de patrimonio natural poco fragmentado (CP_{Max}PNPF) y 3 que han resultado ser de máxima prioridad en ambos escenarios (CP_{Max}PNMFyPNPF). Como se ha explicado anteriormente, esto último se debe a que los índices calculados para la identificación de áreas importantes para mitigación de los efectos de las ILT han identificado no solo los casos extremos que se pretendía identificar

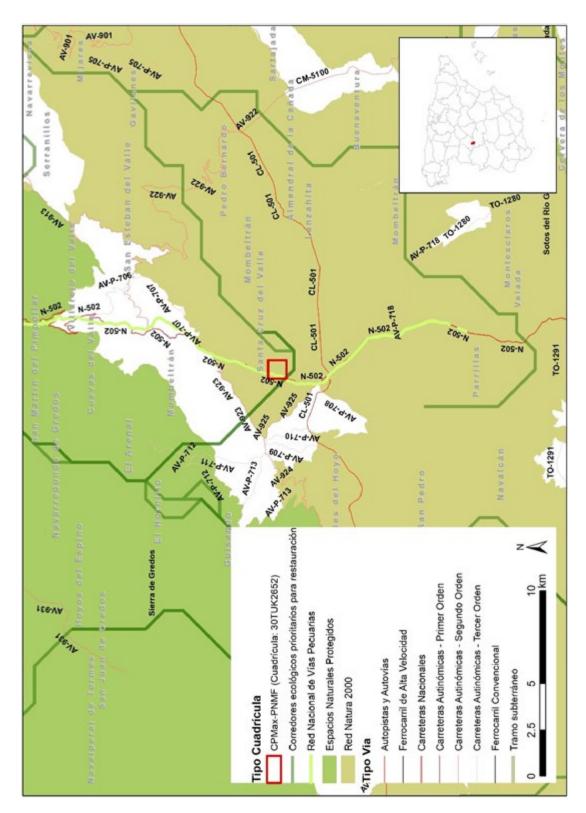

inicialmente, sino también cuadrículas importantes desde el punto de vista de conservación del patrimonio natural en territorios con grado de fragmentación medio.

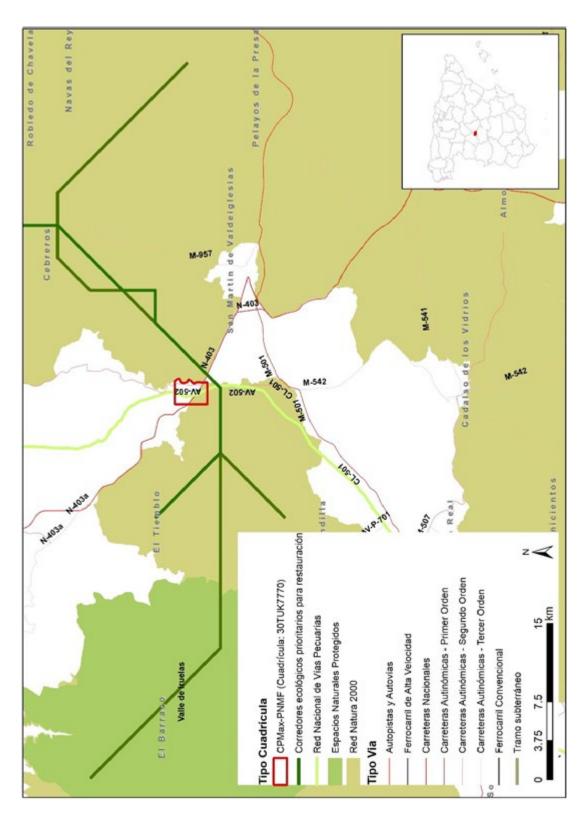
En la tabla 32 se presenta el listado de cuadrículas de máxima prioridad a desfragmentar a nivel estatal. En el epígrafe 2.5.1 se incluyen un mapa con la distribución espacial de dichas cuadrículas y una cartografía de más detalle que las contextualiza en el paisaje.

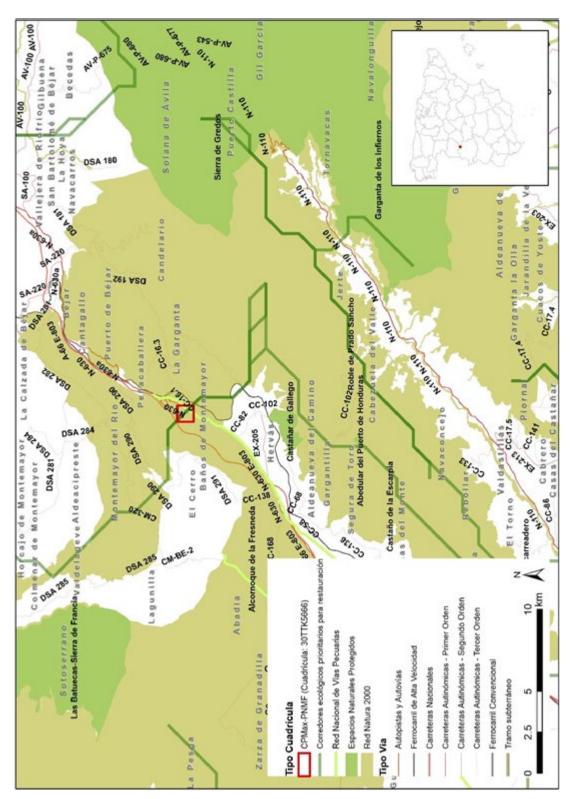

Tabla 32. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal.

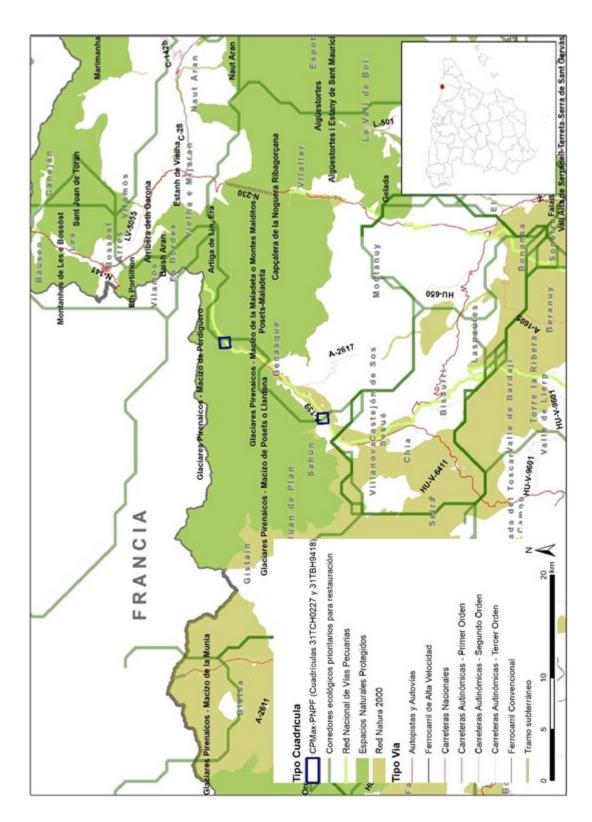
Tipo de cuadrícula	Código Cuadrículas UTM (malla 1 x1 km)	CC. AA.	
	30TUK7770	Castilla y León/Comunidad de Madrid	
CP _{Max} PNMF	30TYM1597	Aragón	
Max ¹ 111111	30TUK2652	Castilla y León	
	30TTK5666	Extremadura	
CP _{Max} PNPF	30TYM1284	Aragón	
	31TBH9418		
	31TCH0227		
	30TVL5049	Comunidad de Madrid	
	29TQG0459	Coatillo v Loón	
	30TVL2042	Castilla y León	
	30TYN1403	Aragón	
CP _{Max} PNMF - CP _{Max} PNPF	30TYN1506		
	30SUH3815	Andalucía	

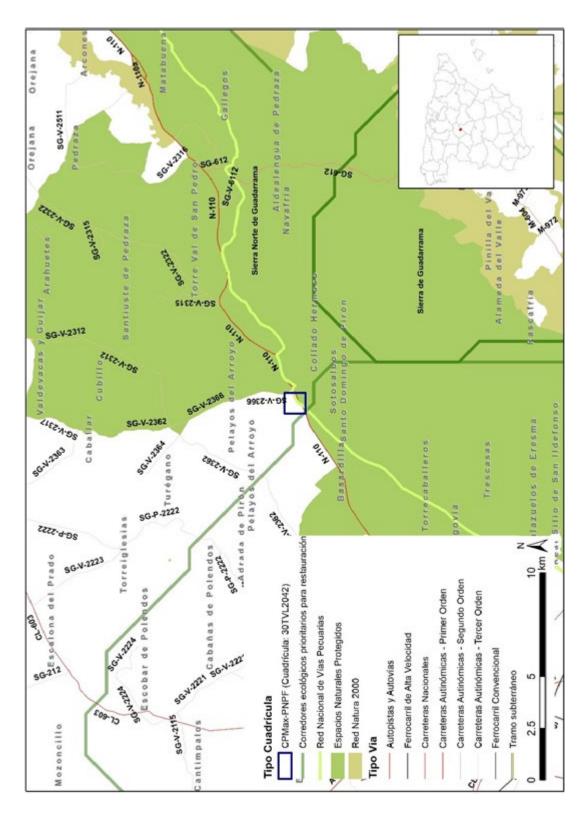

2.5.1 Cartografía de cuadrículas de máxima prioridad a desfragmentar a nivel estatal

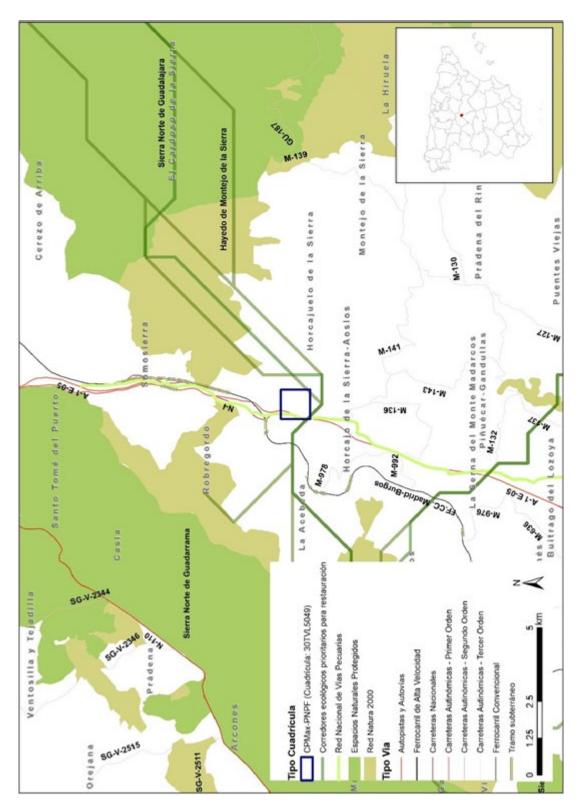

Figura 116. Distribución espacial de Cuadrículas de Máxima Prioridad a desfragmentar a nivel estatal. Se indican las cuadrículas UTM de 1 km2 donde coinciden: a) Áreas prioritarias a desfragmentar en ámbito autonómico de categoría alta, b) Intersecciones entre la red viaria y corredores ecológicos, c) Accidentes con fauna silvestre y d) Intersecciones entre la red viaria y la Red Nacional de Vías Pecuarias. Se muestran las cuadrículas identificadas en el escenario de Patrimonio Natural Muy Fragmentado (CPMaxPNMF), en Patrimonio Natural Poco Fragmentado (CPMaxPNPF) y aquellas que han resultado de máxima prioridad en ambos escenarios (CPMaxPNMFyCPMaxPNPF).


Figura 117. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en Villaviciosa de Córdoba/Obejo – Andalucía.


Figura 118. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal en Sabiñánigo y Nueno – Aragón.


Figura 119. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal en Mombel-trán-Castilla y León.


Figura 120. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en El tiemblo-Castilla y León y San Martin de Valdeiglesias-Madrid.


Figura 121. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en Baños de Montemayor–Extremadura.

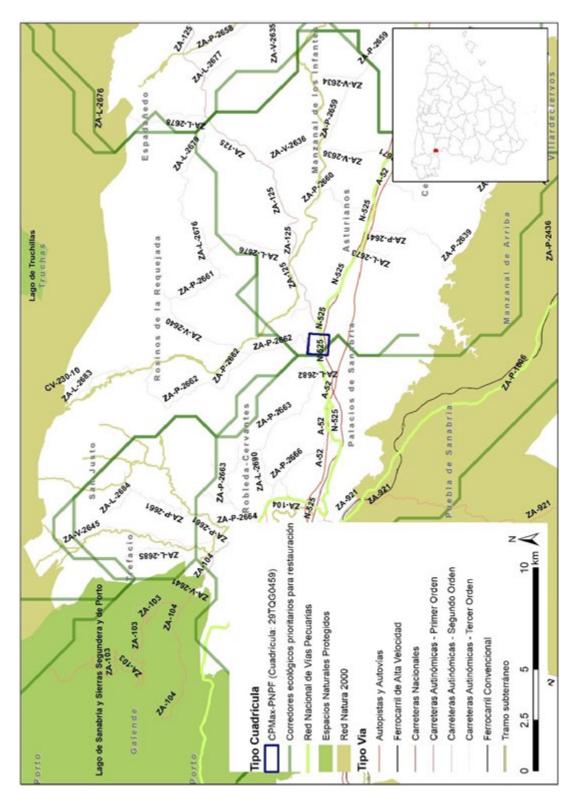

Figura 122. Cuadrículas de máxima prioridad a desfragmentar a nivel estatal en Benasque y Sahún – Aragón.

Figura 123. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en Sotosalbos – Castilla y León.

Figura 124. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en Horcajo de la Sierra-Aoslos/Robregordo – Madrid.

Figura 125. Cuadrícula de máxima prioridad a desfragmentar a nivel estatal en Palacios de Sanabria/Rosinos de la Requejada – Castilla y León.

3 Anexos

I. Especies consideradas para el cálculo del índice de biodiversidad

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11128	Rana dalmatina Bona- parte, 1840	Anfibios	Animalia	Chordata	Amphibia	Anura	Ranidae
12056	Rana pyrenaica Serra-Co- bo, 1993	Anfibios	Animalia	Chordata	Amphibia	Anura	Ranidae
11485	Rana iberica Boulenger, 1879	Anfibios	Animalia	Chordata	Amphibia	Anura	Ranidae
12051	Triturus pygmaeus (Wol-terstorff, 1905)	Anfibios	Animalia	Chordata	Amphibia	Caudata	Salamandridae
11158	Alytes dickhilleni Arntzen & García-París, 1995	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
11632	Chioglossa lusitanica Bocage, 1864	Anfibios	Animalia	Chordata	Amphibia	Caudata	Salamandridae
11878	Alytes obstetricans (Laurenti, 1768)	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
11717	11717 Hyla meridionalis Boett- ger, 1874	Anfibios	Animalia	Chordata	Amphibia	Anura	Hylidae
11108	Pelobates cultripes (Cu- vier, 1829)	Anfibios	Animalia	Chordata	Amphibia	Anura	Pelobatidae
10909	Alytes cisternasii Boscá, 1879	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
12298	Rana temporaria Lin- naeus, 1758	Anfibios	Animalia	Chordata	Amphibia	Anura	Ranidae
10936	Bufo calamita (Laurenti, 1768)	Anfibios	Animalia	Chordata	Amphibia	Anura	Bufonidae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11332	Discoglossus galganoi Capula, Nascetti, Lanza, Crespo & Bullini 1985	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
11985	Discoglossus pictus (Otth, 1837)	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
11677	Triturus marmoratus (Latreille, 1800)	Anfibios	Animalia	Chordata	Amphibia	Caudata	Salamandridae
12243	Botaurus stellaris (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11421	Pandion haliaetus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Pandionidae
111101	Fulica cristata Gmelin, JF, 1789	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae
11741	Lanius minor Gmelin, JF, 1788	Aves	Animalia	Chordata	Aves	Passeriformes	Laniidae
10699	Marmaronetta angusti- rostris (Ménétries, 1832)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
11871	Aythya nyroca (Güldens- tädt, 1770)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
12284	Turnix sylvaticus (Des- fontaines, 1789)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Turnicidae
11014	Aquila adalberti Brehm, CL, 1861	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11963	Falco peregrinus Tunsta- II, 1771	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11737	Milvus milvus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11961	Neophron percnopterus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11327	Cercotrichas galactotes (Temminck, 1820)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11182	Chersophilus duponti (Vieillot, 1824)	Aves	Animalia	Chordata	Aves	Passeriformes	Alaudidae
11954	Falco pelegrinoides Tem- minck, 1829	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae
10822	Gypaetus barbatus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
10763	Numenius arquata (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
11589	Oxyura leucocephala (Scopoli, 1769)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
10759	Phalacrocorax aristotelis subsp. Aristotelis	Aves	Animalia	Chordata	Aves	Suliformes	Phalacrocora- cidae
12371	Tetrao urogallus subsp. Aquitanicus	Aves	Animalia	Chordata	Aves	Galliformes	Phasianidae
12370	Tetrao urogallus subsp. Cantabricus	Aves	Animalia	Chordata	Aves	Galliformes	Phasianidae
10650	Tyto alba (Scopoli, 1769)	Aves	Animalia	Chordata	Aves	Strigiformes	Tytonidae
11787	Charadrius morinellus Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Charadriidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11113	Cursorius cursor (La- tham, 1787)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Glareolidae
11337	Gallinago gallinago (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
14086	Chlidonias niger (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
11768	Aegypius monachus (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11841	Ciconia nigra (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Ciconiiformes	Ciconiidae
12048	Circus pygargus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11591	Dendrocopos leucotos (Bechstein, 1802)	Aves	Animalia	Chordata	Aves	Piciformes	Picidae
11817	Falco naumanni Fleis- cher, JG, 1818	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae
14053	Larus audouinii Payrau- deau, 1826	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
12292	Otis tarda Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Otidiformes	Otididae
14034	Phalacrocorax aristotelis desmarestii (Payrau- deau, 1826)	Aves	Animalia	Chordata	Aves	Suliformes	Phalacrocora- cidae
11590	Platalea leucorodia Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Threskiornithi- dae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
12312	Tetrax tetrax (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Otidiformes	Otididae
11706	Acrocephalus melanopo- gon (Temminck, 1823)	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
11097	Anas crecca Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
12075	Anas querquedula Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
10935	Apus caffer (Lichtens- tein, MHK, 1823)	Aves	Animalia	Chordata	Aves	Apodiformes	Apodidae
10734	Calandrella brachydac- tyla (Leisler, 1814)	Aves	Animalia	Chordata	Aves	Passeriformes	Alaudidae
14049	14049 Larus genei Brème, 1839	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
10662	Pterocles alchata (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Pteroclidifor- mes	Pteroclididae
11909	Pterocles orientalis (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Pteroclidifor- mes	Pteroclididae
12356	Streptopelia turtur (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
11339	Coracias garrulus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Coraciiformes	Coraciidae
12021	Glareola pratincola (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Glareolidae
12124	Netta rufina (Pallas, 1773)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11977	Phoenicurus phoenicu- rus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11247	Plegadis falcinellus (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Threskiornithi- dae
12329	Tringa totanus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
11932	Acrocephalus paludicola (Vieillot, 1817)	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
11011	Anas acuta Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
10664	Charadrius alexandrinus Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Charadriidae
14085	Chlidonias hybrida (Pa- Ilas, 1811)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
11307	Corvus frugilegus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Corvidae
11600	Limosa limosa (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
11316	Aegolius funereus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Strigiformes	Strigidae
10888	Aquila chrysaetos (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11198	Falco eleonorae Géné, 1839	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae
11273	Asio flammeus (Ponto- ppidan, 1763)	Aves	Animalia	Chordata	Aves	Strigiformes	Strigidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10723	Columba bollii Godman, 1872	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
12262	Falco subbuteo Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae
11735	Milvus migrans (Bod- daert, 1783)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
14079	Sterna hirundo Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
12146	Sterna sandvicensis Latham, 1787	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
10794	Alcedo atthis (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Coraciiformes	Alcedinidae
11887	Burhinus oedicnemus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Burhinidae
11700	Dendrocopos medius Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Piciformes	Picidae
10930	Elanus caeruleus (Des- fontaines, 1789)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
12190	Lanius senator Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Laniidae
11453	Oenanthe hispanica (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
12081	Ardeola ralloides (Scopo- li, 1769)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11917	Haematopus ostralegus Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Haematopodi- dae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11630	Locustella luscinioides (Savi, 1824)	Aves	Animalia	Chordata	Aves	Passeriformes	Locustellidae
12286	Tadorna tadorna (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
11927	Hippolais pallida Hemprich and Ehren- berg,1833	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
10839	Panurus biarmicus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Panuridae
12337	Phylloscopus trochilus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Phylloscopidae
12041	Ardea purpurea Lin- naeus, 1766	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11072	Sylvia conspicillata Tem- minck, 1820	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
11474	Sylvia hortensis (Gmelin, JF, 1789)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
11336	Circaetus gallicus (Gme- lin, JF, 1788)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11592	Oenanthe leucura (Gmellin, JF, 1789)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
10739	Pernis apivorus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
12378	Vanellus vanellus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Charadriidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
12249	Anas strepera Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
10801	Recurvirostra avosetta Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Recurvirostri- dae
12111	Erithacus rubecula (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11703	Sylvia melanocephala (Gmelin, JF, 1789)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
12114	Alectoris rufa (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Galliformes	Phasianidae
10951	Carduelis cannabina Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
11891	Columba oenas Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
11094	Coturnix coturnix (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Galliformes	Phasianidae
12326	Jynx torquilla Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Piciformes	Picidae
12043	Porzana pusilla (Pallas, 1776)	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae
10947	Serinus canaria (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
10949	Phylloscopus canarien- sis (Hartwig, 1886)	Aves	Animalia	Chordata	Aves	Passeriformes	Phylloscopidae
12014	Porzana porzana (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10713	Margaritifera auricularia (Spengler, 1793)	Invertebrados	Animalia	Mollusca	Bivalvia	Unionida	Margaritiferidae
12311	Lindenia tetraphylla (Vander Linden, 1825)	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Gomphidae
12236	Macromia splendens (Pictet, 1843)	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Corduliidae
11950	Leucorrhinia pectoralis (Charpentier, 1825)	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Libellulidae
12386	Theodoxus velascoi (Graells, 1846)	Invertebrados	Animalia	Mollusca	Gastropoda	Cycloneritida	Neritidae
10696	Vertigo angustior Jeffreys, 1830	Invertebrados	Animalia	Mollusca	Gastropoda	Stylommato- phora	Vertiginidae
11788	Vertigo moulinsiana (Dupuy, 1849)	Invertebrados	Animalia	Mollusca	Gastropoda	Stylommato- phora	Vertiginidae
11662	Margaritifera margaritife- ra (Linnaeus, 1758)	Invertebrados	Animalia	Mollusca	Bivalvia	Unionida	Margaritiferidae
11398	Gomphus graslinii Ram- bur, 1842	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Gomphidae
11378	Polyommatus golgus (Hübner, 1813)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Lycaenidae
11952	Saga pedo (Pallas, 1771)	Invertebrados	Animalia	Arthropoda	Insecta	Orthoptera	Tettigoniidae
12373	Baetica ustulata (Ram- bur, 1838)	Invertebrados	Animalia	Arthropoda	Insecta	Orthoptera	Tettigoniidae
12350	Unio tumidiformis Castro, 1885	Invertebrados	Animalia	Mollusca	Bivalvia	Unionida	Unionidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10742	Apteromantis aptera (Fuente, 1984)	Invertebrados	Animalia	Arthropoda	Insecta	Mantodea	Mantidae
12235	Buprestis splendens Fabricius, 1775	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Buprestidae
11715	Coenagrion mercuriale (Charpentier, 1840)	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Coenagrionidae
12397	Limoniscus violaceus (Müller, 1821)	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Elateridae
24223	Austropotamobius palli- pes (Lereboullet, 1858)	Invertebrados	Animalia	Arthropoda	Malacos- traca	Decapoda	Astacidae
11644	Geomalacus maculosus Allman, 1843	Invertebrados	Animalia	Mollusca	Gastropoda	Stylommato- phora	Arionidae
11008	Lopinga achine (Scopoli, 1763)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Nymphalidae
10941	Macrothele calpeiana (Walckenaer, 1805)	Invertebrados	Animalia	Arthropoda	Arachnida	Araneae	Macrothelidae
24253	Maculinea nausithous (Bergsträsser, 1779)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Lycaenidae
11213	Osmoderma eremita (Scopoli, 1763)	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Cetoniidae
11115	Oxygastra curtisii (Dale, 1834)	Invertebrados	Animalia	Arthropoda	Insecta	Odonata	Corduliidae
11658	Unio mancus Lamarck, 1819	Invertebrados	Animalia	Mollusca	Bivalvia	Unionida	Unionidae
11818	Phengaris nausithous (Bergsträsser, 1779)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Lycaenidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11527	Graellsia isabellae (Graells, 1849)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Saturniidae
11002	Lucanus cervus Lin- naeus, 1758	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Lucanidae
10679	Rosalia alpina (Linnaeus, 1758)	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Cerambycidae
12079	Elona quimperiana (Bla- inville, 1821)	Invertebrados	Animalia	Mollusca	Gastropoda	Stylommato- phora	Elonidae
10740	Parnassius apollo (Lin- naeus, 1758)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Papilionidae
11759	Parnassius mnemosyne (Linnaeus, 1758)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Papilionidae
12023	Proserpinus proserpina (Pallas, 1772)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Sphingidae
10990	Eriogaster catax (Lin- naeus, 1758)	Invertebrados	Animalia	Arthropoda	Insecta	Lepidoptera	Lasiocampidae
10904	Cucujus cinnaberinus (Scopoli, 1774)	Invertebrados	Animalia	Arthropoda	Insecta	Coleoptera	Cucujidae
11943	Lynx pardinus (Tem- minck, 1827)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Felidae
10755	Ursus arctos Linnaeus, 1758	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Ursidae
11638	Mustela lutreola (Lin- naeus, 1761)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Mustelidae
10958	Myotis capaccinii (Bona- parte, 1837)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11702	Rhinolophus mehelyi Matschie, 1901	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Rhinolophidae
12059	Galemys pyrenaicus (É. Geoffroy Saint-Hilaire, 1811)	Mamíferos	Animalia	Chordata	Mammalia	Soricomorpha	Talpidae
12169	Miniopterus schreibersii (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Miniopteridae
10826	Myotis bechsteinii (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
10866	Myotis blythii (Tomes, 1857)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11206	Myotis emarginatus (E. Geoffroy, 1806)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11803	Myotis myotis (Borkhau- sen, 1797)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11566	Nyctalus lasiopterus (Schreber, 1780)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11862	Nyctalus noctula (Schreber, 1774)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11230	Rhinolophus euryale Blasius, 1853	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Rhinolophidae
11627	Canis lupus Linnaeus, 1758	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Canidae
12055	Capra pyrenaica Schinz, 1838	Mamíferos	Animalia	Chordata	Mammalia	Artiodactyla	Bovidae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
12214	Felis silvestris Schreber, 1777	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Felidae
12047	Mustela putorius Lin- naeus, 1758	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Mustelidae
10820	Barbastella barbastellus (Schreber, 1774)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
12154	Hypsugo savii (Bonapar- te, 1837)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11805	Myotis mystacinus (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11573	Nyctalus leisleri (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11814	Pipistrellus nathusii (Keyserling & Blasius, 1839)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
10715	Plecotus auritus (Lin- naeus, 1758)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
10799	Plecotus austriacus (J. Fischer, 1829)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11264	Rhinolophus ferrume- quinum (Schreber, 1774)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Rhinolophidae
11451	Rhinolophus hipposide- ros (Bechstein, 1800)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Rhinolophidae
12305	Tadarida teniotis (Rafi- nesque, 1814)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Molossidae
12054	Rupicapra pyrenaica Bonaparte, 1845	Mamíferos	Animalia	Chordata	Mammalia	Artiodactyla	Bovidae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11350	Genetta genetta (Lin- naeus, 1758)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Viverridae
11497	Herpestes ichneumon (Linnaeus, 1758)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Herpestidae
11637	Lutra lutra (Linnaeus, 1758)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Mustelidae
11679	Martes martes (Lin- naeus, 1758)	Mamíferos	Animalia	Chordata	Mammalia	Carnivora	Mustelidae
12197	Eptesicus serotinus (Schreber, 1774)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
10669	Atelerix algirus (Lerebou- llet, 1842)	Mamíferos	Animalia	Chordata	Mammalia	Erinaceomor- pha	Erinaceidae
11131	Myotis daubentonii (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11550	Pipistrellus kuhlii (Kuhl, 1817)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11991	Pipistrellus pipistrellus (Schreber, 1774)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
12050	Pipistrellus pygmaeus (Leach, 1825)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
10661	Myotis alcathoe Helver- sen & Heller, 2001	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
11641	Plecotus macrobullaris Kuzjakin,1965	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11997	Lampetra planeri (Bloch, 1784)	Peces	Animalia	Chordata	Cephalaspi- domorphi	Petromyzonti- formes	Petromyzonti- dae
11455	Valencia hispanica (Va- Ienciennes, 1846)	Peces	Animalia	Chordata	Actinop- terygii	Cyprinodonti- formes	Valenciidae
11377	Cottus gobio L.	Peces	Animalia	Chordata	Actinop- terygii	Scorpaenifor- mes	Cottidae
11471	Cottus hispaniolensis Bâcescu & Bâcescu-Mes- ter, 1964	Peces	Animalia	Chordata	Actinop- terygii	Scorpaenifor- mes	Cottidae
10765	Parachondrostoma arrigonis (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11925	Squalius palaciosi (Doadrio, 1980)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11454	Anaecypris hispanica (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
12143	Achondrostoma salman- 12143 tinum Doadrio & Elvira, 2007	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
10807	Aphanius baeticus Doadrio, Carmona & Fer- nández-Delgado, 2002	Peces	Animalia	Chordata	Actinop- terygii	Cyprinodonti- formes	Cyprinodonti- dae
12393	Cobitis vettonica Doadrio & Perdices, 1997	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cobitidae
12354	Parachondrostoma tu- riense (Elvira, 1987)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10752	Achondrostoma arcasii (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11718	Barbus meridionalis Risso, 1827	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
10939	Cobitis calderoni Baces- cu, 1962	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cobitidae
11931	Cobitis paludica (De Buen, 1939)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cobitidae
11576	Iberochondrostoma Iemmingii (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11060	Luciobarbus comizo (Steindachner, 1865)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11408	Luciobarbus guiraonis (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11730	Luciobarbus micro- cephalus (Almaça, 1967)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11415	Barbus haasi Mertens, 1924	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11183	Pseudochondrostoma duriense (Coelho, 1985)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
12429	Pseudochondrostoma willkommii (Steindach- ner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
10868	Luciobarbus bocagei (Steindachner, 1865)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11388	Luciobarbus graellsii (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
12174	Luciobarbus sclateri Günther, 1868	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11733	Parachondrostoma mie- gii (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
12010	Pseudochondrostoma polylepis (Steindachner, 1864)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
10659	Squalius alburnoides (Steindachner, 1866)	Peces	Animalia	Chordata	Actinop- terygii	Cypriniformes	Cyprinidae
11425	Jungermannia handelii (Schiffn.) Amakawa	Plantas no vasculares	Plantae	Marchan- tiophyta	Jungerman- niopsida	Jungermannia- Ies	Jungermannia- ceae
11321	Sphagnum fuscum (Schimp.) H. Klinggr.	Plantas no vasculares	Plantae	Bryophyta	Sphagnop- sida	Sphagnales	Sphagnaceae
12389	Hamatocaulis vernico- sus (Mitt.) Hedenäs	Plantas no vasculares	Plantae	Bryophyta	Bryopsida	Hypnales	Amblystegia- ceae
10996	Sphagnum centrale C.E.O.Jensen	Plantas no vasculares	Plantae	Bryophyta	Sphagnop- sida	Sphagnales	Sphagnaceae
12400	Dicranum viride (Sull. & Lesq.) Lindb.	Plantas no vasculares	Plantae	Bryophyta	Bryopsida	Dicranales	Dicranaceae
12421	Sphagnum warnstorfii Russow	Plantas no vasculares	Plantae	Bryophyta	Sphagnop- sida	Sphagnales	Sphagnaceae
24060	Sphagnum pylaesii Brid.	Plantas no vasculares	Plantae	Bryophyta	Sphagnop- sida	Sphagnales	Sphagnaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
2602	Astragalus nitidiflorus Jiménez Mun. & Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
2612	Astragalus tremolsianus Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
2698	Borderea chouardii (Gaussen) Heslot	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Dioscoreales	Dioscoreaceae
6866	Erodium astragaloides Boiss. & Reut.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Geraniales	Geraniaceae
5264	Hieracium recoderi de Retz	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
5517	Jurinea fontqueri Cua- trec.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
9/99	Laserpitium longiradium Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
490	Limonium vigoi L. Sáez, Curcó & Roselló	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
6226	Marsilea quadrifolia L.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Salviniales	Marsileaceae
974	Picris willkommii (Sch. Bip.) Nyman	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
8902	Thymus carnosus Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
2067	Antirrhinum charidemi Lange	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
2337	Arenaria nevadensis Boiss. & Reut. In Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
2916	Carduus myriacanthus Salzm. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
375	Hieracium queraltense Retz	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
376	Hieracium texedense Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
377	Hieracium vinyasianum Font Quer	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
5130	Hymenophyllum wilsonii Hook.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Hymenophy- Ilales	Hymenophylla- ceae
5845	Limonium malacitanum Díez Garretas	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
487	Limonium perplexum L.Sáez & Rosselló	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
8876	Thymelaea lythroides Barratte & Murb.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Thymelaeaceae
9918	Artemisia granatensis Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
3169	Caropsis verticilla- to-inundata (Thore) Rauschert	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
3616	Cistus heterophyllus subsp. Carthaginensis (Pau) M.B.Crespo & Mateo	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
24246	Iris boissieri Henriq	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Iridaceae
2768	Limonium dodartii (Gi- rard) Kuntze	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
7028	Pellaea calomelanos (Sw.) Link	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Polypodiales	Pteridaceae
7653	Reseda jacquinii subsp. Litigiosa (Sennen & Pau) Abdallah & De Wit	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Resedaceae
8351	Sideritis serrata Lag.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
7070	Peucedanum schottii Besser ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
7146	Plantago algarbiensis Samp.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
8171	Scrophularia sublyrata Brot.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Scrophularia- ceae
3741	Coronopus navasii Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
245	Erigeron frigidus Boiss. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
7756	Rhaponticum exalta- tum (Cutanda ex Willk.) Greuter	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
8252	Seseli farrenyi Molero & J.Pujadas	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Аріасеае

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
8811	Teucrium lepicephalum Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
8695	Thymelaea broteriana Cout.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Thymelaeaceae
2243	Aquilegia pyrenaica subsp. cazorlensis (Heywood) Galiano & Rivas Mart.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ranunculales	Ranunculaceae
3235	Centaurea borjae Valdés Berm. & Rivas Goday	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
208	Crepis granatensis (Wi- IIk.) Blanca & Cueto	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
3876	Culcita macrocarpa C.Presl	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Cyatheales	Culcitaceae
4157	Dracocephalum austria- cum L.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
1	Erodium paularense Izco & F.Fernández	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Geraniales	Geraniaceae
6093	Luronium natans (L.) Raf.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Alismatales	Alismataceae
6224	Marsilea batardae Lau- nert	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Salviniales	Marsileaceae
6264	Medicago citrina (Font Quer) Greuter	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
6375	Moehringia fontqueri Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
6653	Omphalodes littora- lis subsp. Gallaecica M.Laínz	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Boraginales	Boraginaceae
7648	Rosmarinus tomentosus HubMor. & Maire	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
7723	Rumex rupestris Le Gall	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Polygonaceae
7847	Rupicapnos africana subsp. Decipiens (Pugs- ley) Maire in Jahand. & Maire	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ranunculales	Papaveraceae
986	Senecio elodes Boiss. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
8092	Seseli intricatum Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
8366	Silene sennenii Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae
2205	Antirrhinum lopesianum Rothm.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
2723	Atropa baetica Willk.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Solanaceae
3995	Delphinium bolosii C. Blanché & Molero	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ranunculales	Ranunculaceae
4412	Eryngium viviparum J.Gay	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
4796	Galium viridiflorum Boiss. & Reut.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Gentianales	Rubiaceae
964	Micropyropsis tuberosa Romero-Zarco & Cabe- zudo	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Poales	Poaceae
545	Narcissus longispathus Pugsley	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
6869	Pinguicula nevadensis (H.Lindb.) Casper	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lentibularia- ceae
24271	Puccinellia pungens (Pau) Paunero	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Poales	Poaceae
711	Scorzoneroides micro- cephala (Boiss. Ex DC.) Holub	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
2499	Armeria velutina Welw. Ex Boiss. & Reut.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
358	Hymenostemma pseu- danthemis (Kunze) Willk.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
6119	Lythrum flexuosum Lag.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Myrtales	Lythraceae
8158	Scrophularia herminii Hoffmanns. & Link	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Scrophularia- ceae
4959	Helianthemum alypoides Losa & Rivas Goday	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
3263	Centaurea gadorensis Blanca	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
3364	Centaurium somedanum M.Laínz	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Gentianales	Gentianaceae
10007	Erodium rupicola Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Geraniales	Geraniaceae
5828	Limonium geronense Erben	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
6227	Marsilea strigosa Willd.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Salviniales	Marsileaceae
7040	Petrocoptis grandiflora Rothm.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae
7046	Petrocoptis pseudovis- cosa Fern.Casas	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae
7422	Pteris incompleta Cav.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Polypodiales	Pteridaceae
9688	Silene hifacensis Rouy ex Willk.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae
8495	Soldanella villosa Darra- cq ex Labarrère	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ericales	Primulaceae
9886	Veronica micrantha Hoff- manns. & Link	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
2137	Androcymbium euro- paeum (Lange) K.Richt.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Liliales	Colchicaceae
852	Aster pyrenaeus Desf. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
4970	Helianthemum caput-fe- lis Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
5984	Linaria tursica Valdés & Cabezudo	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
9258	Vandenboschia speciosa (Willd.) G.Kunkel	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Hymenophy- Ilales	Hymenophylla- ceae
3326	Centaurea pulvinata (Blanca) Blanca	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
9873	Gaudinia hispanica Stace & Tutin	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Poales	Poaceae
6546	Narcissus viridiflorus Schousb.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
661	Santolina elegans Boiss. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
740	Senecio nevadensis Boiss. & Reut.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
8845	Teucrium turredanum Losa & Rivas Goday	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
9390	Viola cazorlensis Gand.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malpighiales	Violaceae
5417	Kosteletzkya pentacarpa (L.) Ledeb.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Malvaceae
2155	Androsace pyrenaica Lam.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ericales	Primulaceae
3243	Centaurea citricolor Font Quer	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
3319	Centaurea pinnata Pau ex Vicioso	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
3795	Cypripedium calceolus L.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Orchidaceae
6500	Narcissus cavanillesii Barra & G.López	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
8328	Sideritis glauca Cav.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
8455	Sisymbrium cavani- Ilesianum Castrov. & Valdés Berm.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
9455	Woodwardia radicans (L.) Sm.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Polypodiales	Blechnaceae
10344	Arnica montana L.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
57	Artemisia eriantha Ten.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
5455	Jonopsidium savianum (Caruel) Ball ex Arcang.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
466	Leontodon boryi Boiss. Ex DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
2629	Ornithogalum reverchonii Lange	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Asparagaceae
7044	Petrocoptis montsiccia- na 0.Bolòs & Rivas Mart.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae
8411	Silene mariana Pau	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Caryophylla- ceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
9098	Spiranthes aestivalis (im.) Rich.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Orchidaceae
8714	Teucrium charidemi Sandwith	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
10029	Festuca elegans Boiss.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Poales	Poaceae
24238	Festuca summilusitana Franco & Rocha Afonso	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Poales	Poaceae
33170	Narcissus flavus Lag.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
2235	Apium repens (Jacq.) Lag.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
4118	Diplotaxis ibicensis (Pau) Gómez-Campo	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
4179	Dryopteris corleyi Frasser-Jenk.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Polypodiales	Dryopterida- ceae
4713	Galanthus nivalis L.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
4808	Gentiana lutea L.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Gentianales	Gentianaceae
6514	Narcissus cyclamineus DC. In Redouté	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
6543	Narcissus triandrus L.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
8063	Saxifraga vayredana Luizet	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Saxifragaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11385	Testudo graeca Lin- naeus, 1758	Reptiles	Animalia	Chordata	Reptilia	Testudines	Testudinidae
11434	Testudo hermanni (Gmellin, 1789)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Testudinidae
11903	Emys orbicularis (Lin- naeus, 1758)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Emydidae
11585	Mauremys leprosa (Schweigger, 1812)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Geoemydidae
11660	Algyroides marchi Val- verde, 1958	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
10827	Chalcides bedriagai (Boscá, 1880)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Scincidae
10883	Chamaeleo chamaeleon (Linnaeus, 1758)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Chamaeleoni- dae
11034	Lacerta agilis (Linnaeus, 1758)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
12168	Lacerta schreiberi Be- driaga, 1878	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11995	Podarcis pityusensis (Boscá, 1883)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
10718	Coronella austriaca Lau- renti, 1768	Reptiles	Animalia	Chordata	Reptilia	Squamata	Colubridae
12193	Vipera seoanei Lataste, 1879	Reptiles	Animalia	Chordata	Reptilia	Squamata	Viperidae
10901	Blanus cinereus (Vande- Ili, 1797)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Blanidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10852	Lacerta bilineata (Dau- din, 1802)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11794	Podarcis muralis (Lau- renti, 1768)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
1719	Allium grosii Font Quer	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Amaryllidaceae
2051	Anthyllis hystrix (Willk. Ex Barceló) Cardona, Contandr. & Sierra	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
2230	Apium bermejoi L.Llo- rens	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
3969	Daphne rodriguezii Texidor	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Thymelaeaceae
4504	Euphorbia margalidiana Kuhbier & Lewej.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malpighiales	Euphorbiaceae
5842	Limonium magallu- fianum L.Llorens	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
5879	Limonium pseudodictyo- cladum (Pignatti) L.Llo- rens	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
6502	Naufraga balearica Constance & Cannon	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae
6912	Paeonia cambessedesii (Willk.) Willk. In Willk. & Lange	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Paeoniaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
7576	Ranunculus weyleri Marès ex Willk.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ranunculales	Ranunculaceae
9158	Vicia bifoliolata J.J.Rodr.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
9396	Viola jaubertiana Marès & Vigin.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malpighiales	Violaceae
11596	Podarcis lilfordi (Günther, 1874)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11790	Alytes muletensis (San- chiz & Adrover, 1977)	Anfibios	Animalia	Chordata	Amphibia	Anura	Alytidae
10648	Motacilla alba Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Motacillidae
10728	Sylvia borin (Boddaert, 1783)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
10738	Merops apiaster Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Coraciiformes	Meropidae
10743	Apus apus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Apodiformes	Apodidae
10766	Acrocephalus arundin- aceus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
10786	Fulica atra Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae
10791	Sylvia atricapilla (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
10887	Gallinula chloropus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
10891	Ciconia ciconia (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Ciconiiformes	Ciconiidae
10896	Ardea cinerea Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
10898	Motacilla cinerea Tunsta- II, 1771	Aves	Animalia	Chordata	Aves	Passeriformes	Motacillidae
10907	Emberiza cirlus Lin- naeus, 1766	Aves	Animalia	Chordata	Aves	Passeriformes	Emberizidae
10922	Buteo buteo (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
10944	Anthus campestris (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Motacillidae
10952	Cuculus canorus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Cuculiformes	Cuculidae
10956	Sylvia cantillans (Pallas, 1764)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
10969	Carduelis carduelis (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
10993	Aegithalos caudatus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Aegithalidae
11003	Cettia cetti (Temminck, 1820)	Aves	Animalia	Chordata	Aves	Passeriformes	Cettiidae
11024	Circus aeruginosus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11045	Coccothraustes coc- 11045 cothraustes (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
11047	Fringilla coelebs Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
11054	Prunella collaris (Scopoli, 1769)	Aves	Animalia	Chordata	Aves	Passeriformes	Prunellidae
11056	Phylloscopus collybita (Vieillot, 1817)	Aves	Animalia	Chordata	Aves	Passeriformes	Phylloscopidae
11062	Sylvia communis La- tham, 1787	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
11075	Corvus corax Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Corvidae
11116	Loxia curvirostra Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
11120	Circus cyaneus (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11176	Passer domesticus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Passeridae
11211	Upupa epops Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Bucerotiformes	Upupidae
11229	Caprimulgus europaeus Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Caprimulgifor- mes	Caprimulgidae
11258	Aythya ferina (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11274	Motacilla flava Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Motacillidae
11312	Aythya fuligula (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
11313	Gyps fulvus (HablizI, 1783)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
11340	Egretta garzetta (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11369	Clamator glandarius (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Cuculiformes	Cuculidae
11446	Himantopus himantopus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Recurvirostri- dae
11483	Ficedula hypoleuca (Pa- Ilas, 1764)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11484	Actitis hypoleucos (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
11496	Bubulcus ibis (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11543	Cisticola juncidis (Rafi- nesque, 1810)	Aves	Animalia	Chordata	Aves	Passeriformes	Cisticolidae
11608	Columba livia Gmelin, JF, 1789	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
11650	Parus major Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Paridae
11701	Luscinia megarhynchos Brehm, CL, 1831	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11726	Turdus merula Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Turdidae
11775	Passer montanus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Passeridae
11861	Athene noctua (Scopoli, 1769)	Aves	Animalia	Chordata	Aves	Strigiformes	Strigidae
11870	Nycticorax nycticorax (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11886	Phoenicurus ochruros (Gmelin, SG, 1774)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11890	Oenanthe oenanthe (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
11911	Oriolus oriolus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Oriolidae
11921	Asio otus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Strigiformes	Strigidae
11930	Apus pallidus (Shelley, 1870)	Aves	Animalia	Chordata	Aves	Apodiformes	Apodidae
11934	Columba palumbus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
11957	Remiz pendulinus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Remizidae
11973	Petronia petronia (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Passeriformes	Passeridae
11976	Turdus philomelos Bre- hm, CL, 1831	Aves	Animalia	Chordata	Aves	Passeriformes	Turdidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11981	Pica pica (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Corvidae
12000	Anas platyrhynchos Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
12009	Hippolais polyglotta (Vieillot, 1817)	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
12097	Riparia riparia (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Hirundinidae
12112	Saxicola rubetra (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
12134	Hirundo rustica Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Hirundinidae
12155	Monticola saxatilis (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
12163	Emberiza schoeniclus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Emberizidae
12171	Acrocephalus scirpaceus (Hermann, 1804)	Aves	Animalia	Chordata	Aves	Passeriformes	Acrocephalidae
12175	Otus scops (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Strigiformes	Strigidae
12196	Serinus serinus (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
12206	Phylloscopus sibilatrix (Bechstein, 1793)	Aves	Animalia	Chordata	Aves	Passeriformes	Phylloscopidae
12226	Monticola solitarius (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
12250	Muscicapa striata (Pa- Ilas, 1764)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae
12316	Galerida theklae Brehm, AE, 1857	Aves	Animalia	Chordata	Aves	Passeriformes	Alaudidae
12321	Falco tinnunculus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Falconiformes	Falconidae
12340	Troglodytes troglodytes (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Troglodytidae
12362	Sylvia undata (Boddaert, 1783)	Aves	Animalia	Chordata	Aves	Passeriformes	Sylviidae
12366	Sturnus unicolor Tem- minck, 1820	Aves	Animalia	Chordata	Aves	Passeriformes	Sturnidae
12408	Turdus viscivorus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Turdidae
12415	Sturnus vulgaris Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Passeriformes	Sturnidae
14001	Podiceps cristatus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Podicipedifor- mes	Podicipedidae
14050	Larus melanocephalus Temminck, 1820	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
10745	Rallus aquaticus Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae
10970	Caretta caretta (Lin- naeus, 1758)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Cheloniidae
11179	Charadrius dubius Sco- poli, 1786	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Charadriidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11691	Puffinus mauretanicus Lowe, 1921	Aves	Animalia	Chordata	Aves	Procellariifor- mes	Procellariidae
11750	Ixobrychus minutus (Lin- naeus, 1766)	Aves	Animalia	Chordata	Aves	Pelecanifor- mes	Ardeidae
11801	Chelonia mydas (Lin- naeus, 1758)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Cheloniidae
11959	Hieraaetus pennatus (Gmelin, JF, 1788)	Aves	Animalia	Chordata	Aves	Accipitriformes	Accipitridae
12013	Porphyrio porphyrio (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Gruiformes	Rallidae
12121	Tachybaptus ruficollis (Pallas, 1764)	Aves	Animalia	Chordata	Aves	Podicipedifor- mes	Podicipedidae
12131	Ptyonoprogne rupestris (Scopoli, 1769)	Aves	Animalia	Chordata	Aves	Passeriformes	Hirundinidae
14004	Podiceps nigricollis Bre- hm, 1831	Aves	Animalia	Chordata	Aves	Podicipedifor- mes	Podicipedidae
14023	Hydrobates pelagicus (Linnaeus, 1758)	Aves	Animalia	Chordata	Aves	Procellariifor- mes	Hydrobatidae
14072	Gelochelidon nilotica (Gmelin, 1789)	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
20100	Dermochelys coriacea (Vandelli, 1761)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Dermochelyidae
24239	Gallotia galloti insulana- gae Martin 1985	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11125	Saxicola dacotiae (Meade-Waldo, 1889)	Aves	Animalia	Chordata	Aves	Passeriformes	Muscicapidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
12232	Echinodium spinosum (Mitt.) Jur.	Plantas no vasculares	Plantae	Bryophyta	Bryopsida	Hypnobryales	Echinodiaceae
086	Isoplexis chalcantha Svent. & OʻShan.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
917	Helianthemum gonzalez- ferreri Marrero Rodr.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
1039	Sonchus gandogeri Pit.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
912	Globularia ascanii Bra- mwell & G.Kunkel	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
1005	Sideritis discolor Bolle	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
9	Sambucus nigra subsp. Palmensis (Link) Bolli	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Dipsacales	Adoxaceae
11	Anagyris latifolia Brouss. Ex Willd.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
758	Solanum vespertilio subsp. Doramae Marreno Rodr. & González Martín	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Solanaceae
914	Helianthemum bramwe- Iliorum Marrero Rodr.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
918	Helianthemum inaguae Marrero Rodr., Gonzá- Iez-Martín & Gonzá- Iez-Artiles	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
1042	Teline nervosa (Esteve) A.Hansen & Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
947	Limonium spectabile (Svent.) G.Kunkel & Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
927	Kunkeliella canariensis Stearn	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Santalales	Santalaceae
965	Monanthes wildpretii A.Bañares & S.Scholz	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Crassulaceae
916	Globularia sarcophylla Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
935	Limonium dendroides Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
975	Pericallis hadrosoma (Svent.) B.Nord.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
926	Lotus kunkelii (Esteve) Bramwell & D.H.Davis	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
915	Helianthemum bystropo- gophyllum Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
925	Hypochaeris oligocepha- Ia (Svent. & Bramwell) Lack	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
928	Lotus pyranthus P.Pérez	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
970	Onopordum carduelium Bolle	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
1004	Sideritis cystosiphon Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
1007	Sideritis marmorea Bolle	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
098	Bencomia brachystachya Svent. Ex Nordborg	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Rosales	Rosaceae
847	Argyranthemum sundin- gii L.Borgen	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
850	Argyranthemum winteri (Svent.) Humphries	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
898	Cheirolophus san- tos-abreui A.Santos	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
875	Cheirolophus duranii (Burchard) Holub	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
8/8	Cheirolophus metlesicsii Montelongo	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
888	Crambe sventenii Pett. Ex Bramwell & Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
922	Helichrysum alucen- se García-Casanova, S.Scholz & Hernández	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
846	Limonium sventenii A. Santos & M.Fernández	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
883	Ruta microcarpa Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Sapindales	Rutaceae
882	Convolvulus subauricula- tus (Burchard) Linding.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Convolvulaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
952	Lotus berthelotii Masf.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
1036	Solanum lidii Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Solanaceae
296	Lotus maculatus Breitf.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
805	Echium handiense Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Boraginales	Boraginaceae
1038	Teline salsoloides del Arco & Acebes	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
954	Lotus eremiticus A.San- tos	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
920	Helianthemum teneriffae Coss.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
616	Helianthemum juliae Wildpret	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malvales	Cistaceae
096	Micromeria glomerata P.Pérez	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
1378	Onopordum nogalesii Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
929	Kunkeliella subsucculen- ta Kämmer	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Santalales	Santalaceae
868	Dracaena tamaranae Marrero Rodr., Almeida-Pérez & González-Martín	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Asparagaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
862	Bencomia sphaerocarpa Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Rosales	Rosaceae
926	llex perado subsp. Lopezlilloi (G.Kunkel) A.Hansen & Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Aquifoliales	Aquifoliaceae
9/6	Plantago famarae Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
11516	Gallotia intermedia Hernández, Nogales & Martín, 2000	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
12219	Gallotia simonyi (Stein- dachner, 1889)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11261	Tadorna ferruginea (Pa- Ilas, 1764)	Aves	Animalia	Chordata	Aves	Anseriformes	Anatidae
10835	Anthus berthelotii Bolle, 1862	Aves	Animalia	Chordata	Aves	Passeriformes	Motacillidae
12365	Apus unicolor (Jardine, 1830)	Aves	Animalia	Chordata	Aves	Apodiformes	Apodidae
11505	Eretmochelys imbricata (Linnaeus, 1766)	Reptiles	Animalia	Chordata	Reptilia	Testudines	Cheloniidae
24262	Ophioglossum polyphy- llum A. Braun & Seub.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Ophioglossales	Ophioglossa- ceae
11224	Acrostira euphorbiae García & Oromí, 1992	Invertebrados	Animalia	Arthropoda	Insecta	Orthoptera	Pamphagidae
880	Convolvulus caput-me- dusae Lowe	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Convolvulaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
1055	Bupleurum handiense (Bolle) G.Kunkel	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Аріасеае
1237	Cheirolophus gho- merytus (Svent.) Holub	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
876	Cheirolophus falcisectus Montelongo & Moraleda	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
944	Limonium preauxii (Webb & Berthel.) Kuntze	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Caryophyllales	Plumbagin- aceae
14010	Bulweria bulwerii (Jardi- ne & Selby, 1828)	Aves	Animalia	Chordata	Aves	Procellariifor- mes	Procellariidae
913	Genista benehoavensis (Bolle ex Svent.) del Arco	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
923	Helichrysum monogy- num Burtt & Sunding	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
961	Micromeria leucantha Svent. Ex P.Pérez	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
846	Argyranthemum lidii Humphries	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
931	Isoplexis isabelliana (Webb & Berthel.) Masf.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Plantaginaceae
12	Adenocarpus ombriosus Ceballos & Ortuño	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
848	Asparagus fallax Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Asparagales	Asparagaceae
855	Atractylis arbuscula Svent. & Michaelis	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
856	Atractylis preauxiana Sch.Bip.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
871	Cheirolophus tagananen- sis (Svent.) Holub	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
877	Cheirolophus junonianus (Svent.) Holub	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
988	Crambe laevigata DC. Ex Christ	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
896	Dorycnium spectabile (Choisy ex Ser. In DC.) Webb & Berthel.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
953	Lotus callis-viridis Bra- mwell & D.H.Davis	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Fabales	Fabaceae
1048	Tolpis glabrescens Käm- mer	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
1056	Sventenia bupleuroides Font Quer	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
881	Convolvulus lopezsocasi Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Solanales	Convolvulaceae
12363	Chlamydotis undulata (Jacquin, 1784)	Aves	Animalia	Chordata	Aves	Otidiformes	Otididae
11544	Columba junoniae Har- tert, 1916	Aves	Animalia	Chordata	Aves	Columbiformes	Columbidae
12085	Maiorerus randoi Ram- bla, 1993	Invertebrados	Animalia	Arthropoda	Arachnida	Opiliones	Phalangodidae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11046	Fringilla coelebs subsp. Ombriosa	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae
12303	Plecotus teneriffae Ba- rrett-Hamilton, 1907	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
14026	Oceanodroma castro (Harcourt, 1851)	Aves	Animalia	Chordata	Aves	Procellariifor- mes	Hydrobatidae
12029	Puffinus puffinus (Brün- nich, 1764)	Aves	Animalia	Chordata	Aves	Procellariifor- mes	Procellariidae
12202	Chalcides sexlineatus Steindachner, 1891	Reptiles	Animalia	Chordata	Reptilia	Squamata	Scincidae
12399	Chalcides viridanus (Gravenhorst, 1851)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Scincidae
10785	Gallotia atlantica (Peters & Doria, 1882)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
11338	Gallotia galloti (Oudart, 1839)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
12242	Gallotia stehlini (Schenkel, 1901)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Lacertidae
14057	Larus fuscus Linnaeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
10695	Tarentola angustimenta- lis Steindachner, 1891	Reptiles	Animalia	Chordata	Reptilia	Squamata	Phyllodactyli- dae
10870	Tarentola boettgeri Stein- dachner, 1891	Reptiles	Animalia	Chordata	Reptilia	Squamata	Phyllodactyli- dae
11141	Tarentola delalandii (Du- méril & Bibron, 1836)	Reptiles	Animalia	Chordata	Reptilia	Squamata	Phyllodactyli- dae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
11379	Tarentola gomerensis Joger & Bischoff, 1983	Reptiles	Animalia	Chordata	Reptilia	Squamata	Phyllodactyli- dae
10817	Alectoris barbara (Bon- naterre, 1790)	Aves	Animalia	Chordata	Aves	Galliformes	Phasianidae
11470	Passer hispaniolensis (Temminck, 1820)	Aves	Animalia	Chordata	Aves	Passeriformes	Passeridae
12088	Regulus regulus (Lin- naeus, 1758)	Aves	Animalia	Chordata	Aves	Passeriformes	Regulidae
12136	Scolopax rusticola Lin- naeus, 1758	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Scolopacidae
14078	Sterna dougallii Monta- gu, 1813	Aves	Animalia	Chordata	Aves	Charadriifor- mes	Laridae
11646	Pipistrellus maderensis (Dobson, 1878)	Mamíferos	Animalia	Chordata	Mammalia	Chiroptera	Vespertilionidae
2541	Asplenium hemionitis L.	Plantas vas- culares	Plantae	Tra- cheophyta	Polypodiop- sida	Polypodiales	Aspleniaceae
10948	Crocidura canariensis 10948 Hutterer, López-Jurado y Vogel, 1987	Mamíferos	Animalia	Chordata	Mammalia	Soricomorpha	Soricidae
12218	Chalcides simonyi Steindachner, 1891	Reptiles	Animalia	Chordata	Reptilia	Squamata	Scincidae
832	Aeonium gomerense (Praeger) Praeger	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Crassulaceae
2139	Androcymbium psam- mophilum Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Liliopsida	Liliales	Colchicaceae

TaxonID	Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
861	Bencomia exstipulata Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Rosales	Rosaceae
1258	Dendriopoterium pulidoi Svent. Ex Bramwell	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Rosales	Rosaceae
24416	Sideroxylon canariensis T. Leyens, W. Lobin & A. Santos	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Ericales	Sapotaceae
998	Ceropegia dichotoma subsp. Krainzii (Svent.) Bruyns	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Gentianales	Аросупасеае
206	Euphorbia bourgeana J. Gay ex Boiss. In DC.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malpighiales	Euphorbiaceae
831	Aeonium balsamiferum Webb & Berthel.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Crassulaceae
606	Euphorbia handiensis Burchard	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Malpighiales	Euphorbiaceae
1006	Sideritis infernalis Bolle	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Lamiales	Lamiaceae
1061	Crambe arborea Webb ex Christ	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
1163	Aeonium saundersii Bolle	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Saxifragales	Crassulaceae
1278	Echium gentianoides Webb ex Coincy	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Boraginales	Boraginaceae
1308	Ferula latipinna A. Santos	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Apiales	Apiaceae

TaxonID	TaxonID Especie	Grupo Taxonómico	Reino	División	Clase	Orden	Familia
1331	Helichrysum gossypi- num Webb	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Asterales	Asteraceae
1382	Parolinia schizogynoides Svent.	Plantas vas- culares	Plantae	Tra- cheophyta	Magnoliop- sida	Brassicales	Brassicaceae
11652	Dendrocopos major subsp. Canariensis	Aves	Animalia	Chordata	Aves	Piciformes	Picidae
11651	Dendrocopos major subsp. Thanneri	Aves	Animalia	Chordata	Aves	Piciformes	Picidae
11397	Pimelia granulicollis Wollaston, 1864	Invertebrados Animalia	Animalia	Arthropoda	Insecta	Coleoptera	Tenebrionidae
12314	12314 Fringilla teydea subsp. Teydea	Aves	Animalia	Chordata	Aves	Passeriformes	Fringillidae

II. Análisis de conectividad ecológica

En el presente anexo se recoge un resumen de los procedimientos seguidos para realización de los análisis de conectividad, basados en la aplicación del **Índice de Probabilidad de Conectividad** (PC), desarrollado en el marco del "Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica (MITECO, 2023)".

II.1 Agrupación de especies por ecoperfil y selección de especies focales

Los análisis de conectividad funcional requieren establecer de manera preliminar los taxones que serán objeto de estudio. Dada la imposibilidad técnica y material de analizar todas las especies presentes en el territorio se ha planteado el enfoque basado en ecoperfiles³³ y se han seleccionado especies focales (Lambeck 1997), en las cuales se han centrado los análisis. Se asume que una buena conectividad para éstas especies supondrá que las demás especies encontrarán características adecuadas para su movimiento en el paisaje.

Se ha seleccionado un conjunto de especies de mamíferos, partiendo de una primera clasificación basada en su grado de amenaza, de acuerdo con la metodología propuesta en la "Guía metodológica para la identificación de los elementos de la infraestructura verde de España" 34. Esta selección ha sido realizada considerando la escala de trabajo en la que, necesariamente, los movimientos a considerar han de ser de dispersión y de longitudes relativamente grandes. Se trata, además, de uno de los grupos de fauna mejor estudiados y

de distribución mejor conocida, lo que implica una mayor calidad y fiabilidad de los resultados.

La agrupación de especies en ecoperfiles ha sido llevada a cabo por un grupo de expertos en fauna, y en base a la combinación de 4 variables indicadoras de la sensibilidad a la fragmentación: 1) tipo de cubierta preferida, 2) requerimiento de área para mantener la población estable, 3) capacidad de dispersión y 4) sensibilidad a barreras terrestres (especies voladoras o no). Dicho procedimiento ha sido considerado en trabajos precedentes como Kettunen et al. (2007), Eycott et al. (2007), Henle et al. (2004) y Vos et al. (2001).

La selección de las especies representativas de los ecoperfiles se ha llevado a cabo procurando la máxima diversidad funcional y ecológica de la red de corredores, y abarcando el mayor número posible de hábitat y potenciales respuestas a la heterogeneidad del paisaje. Esta selección se ha realizado atendiendo a criterio experto, a la disponibilidad y calidad de la información y en criterios de escala, procurando la máxima cobertura del territorio nacional. Se han priorizado las especies con alta y media vulnerabilidad a la fragmentación. las cuales pueden verse más beneficiadas por una mejora de la conectividad. También se ha priorizado la inclusión de los mamíferos más escasos, así como las especies emblemáticas.

Finalmente, los análisis se han llevado a cabo considerando los ecoperfiles y especies focales que se presentan en la tabla II.1.

[33] Grupos de especies de similar perfil ecológico (Karlson y Mörtberg, 2015; Vos et al., 2001)

[34] https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/infraes-tructura-verde/iv_guia_metodologica.html

Tabla II.1. Ecoperfiles y especies focales³⁵ considerados en los análisis de conectividad ecológica. Los ecoperfiles se han definido según combinación de variables indicadoras de la sensibilidad a la fragmentación: tipo de cubierta preferida, requerimiento de área para mantener la población estable, capacidad de dispersión y sensibilidad a barreras terrestres.

Ecoperfil	Descripción	Especie focal (Nombre científico/nombre común)
1Mn	Especies generalistas, sin una preferencia definida por un tipo de cubierta concreto, con vulnerabilidad a la fragmentación media y terrestres.	Genetta genetta (Linnaeus, 1758)/ Gineta
2An	Especies con preferencia por más de un tipo de cubierta (mosaicos), con vulnerabi-	Felis silvestris Schreber, 1777 / Gato montés
	lidad a la fragmentación alta y terrestres.	Mustela putorius Linnaeus, 1758 / Turón
		Atelerix algirus (Lereboullet, 1842) / Erizo moruno
2Mn	Especies con preferencia por más de un tipo de cubierta (mosaicos), con vulnerabilidad a la fragmentación media y terrestres.	Herpestes ichneumon (Lin- naeus, 1758) / Meloncillo
	nada a la naginontacion media y terrecutes.	Lynx pardinus (Temminck, 1827) / Lince ibérico
2Ms	Especies con preferencia por más de un tipo de cubierta (mosaicos), con vulnerabilidad a la fragmentación media y voladoras (no sensibles a infraestructuras lineales).	Aquila adalberti Brehm, CL, 1861 / Águila imperial
3Mn	Especies especialistas de bosque denso, con vulnerabilidad a la fragmentación media y terrestres.	Martes martes (Linnaeus, 1758) / Marta
3Ms	Especies especialistas de bosque denso, con vulnerabilidad a la fragmentación media y voladoras (no sensibles a infraestructuras lineales).	Myotis bechsteinii (Kuhl, 1817) / Murciélago
4Ms	Especies especialistas de bosque claro, con vulnerabilidad a la fragmentación media y voladoras (no sensibles a infraestructuras lineales).	Jynx torquilla Linnaeus, 1758 / Torcecuellos

[35] Especies representativas de los ecoperfiles y para las cuales se realizaron los análisis de conectividad.

Ecoperfil	Descripción	Especie focal (Nombre científico/nombre común)
5Ms	Especies especialistas de cubiertas de matorral, con vulnerabilidad a la fragmentación media y voladoras (no sensibles a infraestructuras lineales).	Hippolais pallida Hemprich and Ehrenberg,1833 / Zarcero páli- do
5Bs	Especies especialistas de cubiertas de matorral, con vulnerabilidad a la fragmentación baja y voladoras (no sensibles a infraestructuras lineales).	Sylvia melanocephala (Gmelin, JF, 1789) / Curruca cabecine- gra
6As	Especies esteparias (especialistas), con vulnerabilidad a la fragmentación alta y voladoras (no sensibles a infraestructuras lineales).	Pterocles orientalis (Linnaeus, 1758) / Ortega
6Ms	Especies esteparias (especialistas), con vulnerabilidad a la fragmentación media y voladoras (no sensibles a infraestructuras lineales).	
7Ms	Especies especialistas con preferencia por cubiertas riparias, con vulnerabilidad a la fragmentación media y voladoras (no sen- sibles a infraestructuras lineales).	· · · · · · · · · · · · · · · · · · ·

II.2 Selección de áreas fuente

El análisis de conectividad se ha realizado partiendo de un conjunto de **áreas fuente o nodos** entre los que es posible estimar las rutas potenciales con mayor facilidad de desplazamiento para las especies seleccionadas. En este análisis, los nodos se corresponden con puntos localizados en teselas de hábitat con presencia de especies focales.

Se han generado modelos de distribución de las especies focales, con una resolución espacial de 100 m, partiendo de los datos de presencia del *Inventario Español de Especies Terrestres* en cuadrículas UTM de 10 x 10 km (IEET, <u>ver epígrafe II.3</u>). Las probabilidades de presencia de la especie en cada píxel, dadas por los

modelos de distribución, han sido convertido a valores de presencia o ausencia, estableciendo para ello, un valor de corte igual a 0,5 de favorabilidad (equivalente a la probabilidad media de presencia de las especies). Así, el área de presencia 'potencial' de cada especie se ha obtenido como el conjunto de píxeles de 100x100 m con favorabilidad > 0.5 en toda el área de análisis. Posteriormente estas presencias potenciales (píxeles de 100x100 m) se han intersectado con los datos de presencia de las cuadrículas UTM de 10x10 km del IEET, lo que en la práctica supone eliminar dentro de las cuadrículas UTM de 10x10 km aquellas zonas de baja favorabilidad incluidas en las mismas, con una resolución de 100 m.

Una vez obtenida la cartografía reescalada de presencia de cada especie, a resolución de 100 m, se ha asignado una localización geográfica (un punto) a cada nodo. Para ello se han ubicado puntos dentro de las teselas de hábitat (áreas de presencia de la especie en cuestión) de forma sistemática, estableciendo para ello, un punto por cada cuadrícula de la malla UTM de 10 x 10 km. Estos puntos se asumen como origen y destino de posibles movimientos de las especies.

II.3 Superficie de resistencia e identificación de rutas de coste mínimo

El cálculo de rutas de coste mínimo requiere además de las localizaciones de origen y destino de los caminos (nodos), una superficie de resistencia a través de la cual deben producirse las conexiones entre dichas localizaciones. Para ello se han obtenido las superficies de resistencia a partir de modelos de distribución de especies, calculados mediante regresiones logísticas, cuyos resultados informan sobre la probabilidad de ocurrencia en el territorio de las especies modelizadas³⁶. Los valores de resistencia han sido obtenidos mediante la inversa de la calidad de hábitat.

Los modelos se han calculado para el territorio peninsular completo (incluyendo Portugal) más una franja de 200m en Francia, con el fin de permitir, en su caso, que los caminos de coste mínimo puedan discurrir por zonas adyacentes al territo-

rio español. Las variables predictoras empleadas han sido: i) porcentajes de tipos de cubierta del suelo en las cuadrículas UTM 10x10 km, y ii) temperatura media anual de la cuadrícula. Se han descartado otras variables relacionadas con la altitud o la topografía, tras comprobar que no suponían una mejora significativa de los resultados, circunstancia atribuible a la escala del trabajo y la reducida resolución de los datos de presencia.

La cubierta del suelo integra un conjunto de factores ecológicos relacionados con disponibilidad de recursos tróficos, refugio e influencia humana. La temperatura media anual ha sido selleccionada como indicador básico de las condiciones climáticas, con el objeto de capturar la respuesta de especies más o menos tolerantes a climas cálidos.

Como cartografía de base de usos y cubiertas del suelo se ha utilizado Corine Land Cover (2018), la cual ha sido rasterizada con un tamaño de celda de 100 m. Los datos de temperatura media anual se corresponden con los registros del periodo 1971-2000 y se han obtenido de la Agencia Estatal de Meteorología (AEMET, 2011), con una resolución espacial de 1 km. A partir de éstos datos, se ha calculado el valor medio de la temperatura media anual para cada cuadrícula UTM de 10 km. Finalmente, la resolución espacial de los modelos de distribución de especies elaborados ha sido de 100 m.

[36] Este procedimiento mejora en cuanto a la reproducibilidad y objetividad los resultados obtenidos en la PT6 en la que el método utilizado para la obtención de la superficie de resistencia se basa en la asignación de valores mediante criterio experto y bibliografía. En cualquier caso, los resultados de ambos métodos son dependientes de la calidad de la información de partida, por lo que una mejora de los datos de distribución de especies permitiría aplicar técnicas de modelización más complejas, considerando los factores ecológicos de una forma menos general, y obtener mapas de resistencia más precisos (p.ej. Gastón et al., 2016, Mateo Sánchez et al., 2014).

Una vez generados los modelos de distribución de especies (mapas de predicción de su probabilidad de presencia), los valores de probabilidad se han transformado en valores de favorabilidad (índice con rango de variación entre 0 y 1 en el que a la probabilidad media de la especie se le asigna el valor 0,5, para que estos valores ya no dependan de la prevalencia de la especie), de forma que los resultados correspondientes a las diferentes especies se refieran a la misma escala. Los valores de favorabilidad han sido posteriormente convertidos en valores de resistencias en una escala 1-100 (100 indica mayor resistencia) mediante una transformación exponencial, alternativa considerada más adecuada frente a la transformación lineal (Keeley et al. 2016).

Sobre las capas ráster así creadas se han superpuesto los píxeles correspondientes a ciertos tipos de cubierta cuya resistencia se ha asignado de forma directa, como los de las zonas urbanas o las infraestructuras de transporte, a las que se han asignado valores netamente superiores para representar de forma clara el efecto barrera que suponen. A los tipos de cubierta cultivo intensivo y sin vegetación se han asignado valores de resistencia 100, pues su inclusión en los modelos de distribución de especies generaba resultados no deseados.

La red de infraestructuras de transporte se ha obtenido para el área de análisis (incluye Portugal y franja en Francia) de Open Street Map (OSM), de cuyos datos se han utilizado las líneas de ferrocarril y carreteras hasta el nivel terciario. Dicha información se ha agrupado en tres niveles generales de resistencia: 1.000 para líneas alta velocidad y autopistas, 500 para ferrocarril convencional y carreteras troncales y primarias, y 250 para carreteras secundarias y terciarias, todas ellas categorías empleadas en OSM.

Finalmente, por motivos computacionales se han utilizado capas de resistencias con resolución de 1 km para el cálculo de caminos de coste mínimo. Estas capas han sido obtenidas a partir de las capas iniciales con resolución de 100 m, mediante la herramienta 'Cell statistics / Mean' y un valor de píxel de salida de 1 km.

II.4 Identificación de rutas de coste mínimo (corredores)

A partir de revisión de bibliografía y criterio experto se han asignado a cada especie focal valores de distancia de dispersión, los cuales han sido utilizados como *input* en los cálculos de caminos de coste mínimo y de los índices dPCs³⁷ (ver epígrafe II.5), respectivamente.

Partiendo de las superficies de resistencias elaboradas para las cuatro especies focales y ecoperfiles se han identificado, mediante la herramienta Linkage Mapper³⁸, las rutas de coste mínimo de desplazamiento entre nodos (que corresponden a las rutas óptimas para el desplazamiento de las especies, al presentar los menores valores de resistencia acu-

[37] Los dPCs se calculan con el software Conefor y requiere convertir los valores de distancias euclideas en distancias efectivas (distancias ponderadas por los costes). Como factor para realizar esta conversión se utilizó el valor de resistencia media en el área de análisis para cada especie.

[38] Linkage Mapper versión 1.0.9 (McRae y Kavanagh, 2011) que funciona sobre ArcGIS 10.

mulada entre cada par de nodos) y se han calculado las distancias efectivas entre los nodos (que corresponden al valor numérico de resistencia acumulada en cada una de dichas rutas).

II.5 Índice de probabilidad de conexión (PC) e importancia de los corredores

Como resultado de los análisis de rutas de coste mínimo se ha obtenido un determinado número de conectores, que contribuyen en diferentes grados al mantenimiento o mejora (mediante acciones de restauración) de la conectividad del hábitat en cuestión.

La priorización de los conectores de cara a la gestión es fundamental, ya que actuar sobre todos ellos y con la misma intensidad no suele ser posible. Por ello ha sido de gran interés identificar, mediante un procedimiento objetivo, aquellos conectores en los que concentrar los recursos de conservación y restauración disponibles, haciendo la gestión lo más eficiente posible.

La contribución de cada enlace a la conectividad, en el conjunto de la red de nodos, ha sido estimada mediante el índice de probabilidad de conexión (PC; Saura y Rubio 2010, Saura y Pascual-Hortal 2007), utilizando el software CONEFOR (Saura y Torné 2009). Se han considerado dos escenarios de priorización de los corredores que se describen a continuación según Saura et al. (2016):

1. Escenario de conservación. Se identificaron aquellos conectores en los que la degradación o deterioro de sus condiciones actuales tendría un efecto más pernicioso sobre los niveles de conectividad que actualmente presenta el hábitat considerado.

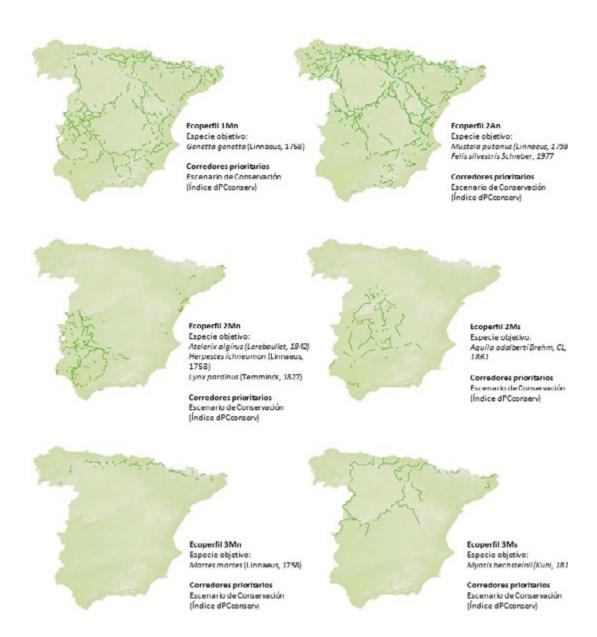
2. Escenario de restauración. Se identificaron aquellos conectores en los que la mejora de sus condiciones, hasta su mejor estado posible, en el que todo el conector transitara por las cubiertas más favorables para el movimiento de las especies asociadas al hábitat considerado, redundaría en un mayor incremento de la conectividad del conjunto.

El índice PC se calcula sobre estructura de grafos y se basa en un modelo probabilístico de conectividad en el que cada conexión entre dos teselas queda caracterizada por una determinada probabilidad de movimiento o dispersión entre las mismas. Se define como la probabilidad de que dos puntos ubicados al azar dentro del paisaje queden situados en zonas de hábitat interconectadas entre sí, para un conjunto de teselas de hábitat y de enlaces (conexiones) entre ellas (Saura y Pascual-Hortal 2007). El índice tiene en cuenta la posición topológica de los enlaces y la cantidad de hábitat (superficie) de los nodos conectados por los diferentes enlaces y se calcula mediante la siquiente fórmula:

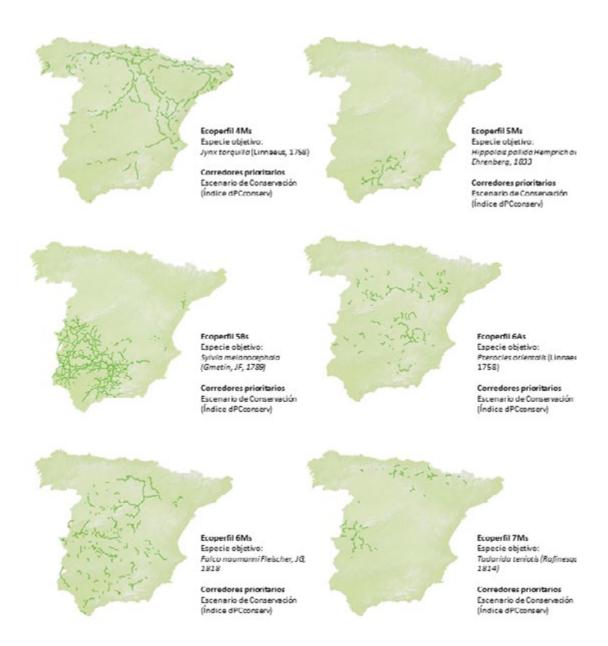
PC =
$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \cdot a_{j} \cdot p^{*}_{ij}}{A_{i}^{2}} = \frac{PC_{num}}{A_{i}^{2}}$$

Donde n es el número total de teselas de hábitat; a, y a, son los atributos de las teselas i y j respectivamente; p, es la probabilidad máxima de conexión entre las teselas i y j (considerando todos los posibles caminos alternativos dentro del grafo y no solo la conexión directa); A, es el valor total del atributo que se haya considerado para asignar valores a las teselas (en este caso, la superficie de las teselas); y PC num denota el numerador del índice PC.

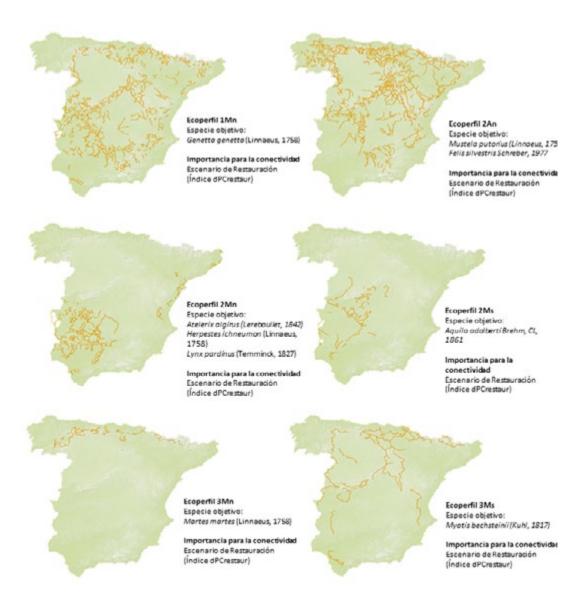
La importancia o contribución de cada enlace al mantenimiento o fomento de la conectividad ecológica, se ha calculado como el porcentaje de variación en el índice PC (dPC_k), es decir, como el porcentaje de disminución en la conectividad que se produciría por la pérdida de un determinado enlace en el territorio.


$$dPC_{k} = 100 \cdot \frac{PC - PC_{elim,K}}{PC}$$

donde dPC, es la importancia del elemento k para el mantenimiento de la conectividad y disponibilidad de hábitat en el paisaje según este índice, PC es el valor del índice en el paisaje original (antes de la eliminación de ningún elemento), y PC_{elim.k} es el valor del índice tras la eliminación del elemento k. El cálculo de dPC, para cada uno de los elementos del paisaje permite priorizar e identificar las zonas de hábitat más críticas para el mantenimiento de la conectividad ecológica. El mismo procedimiento se puede aplicar para el caso de medidas de reforestación o restauración del hábitat que añadan al paisaje nuevos elementos favorables para la disponibilidad y conectividad del hábitat, cuya contribución relativa se evaluaría e interpretaría de manera análoga mediante dPC_{ν} (Saura 2013).


En general, es esperable que las prioridades obtenidas para una especie sean diferentes para cada uno de los escenarios considerados. Por ejemplo, si un corredor tiene actualmente baja calidad, su pérdida o deterioro adicional puede tener un impacto bajo en la conectividad de la red de hábitat, ya que ese corredor era ya poco utilizable para el movimiento entre las áreas de hábitat. Por tanto, tal corredor tendrá baja importancia y prioridad en el escenario de conservación. Pero ese

mismo corredor puede tener alta prioridad en el escenario de restauración si su mejora contribuyera de manera sustancial a incrementar la conectividad entre las áreas de hábitat de la red, por encontrarse estas actualmente muy débilmente conectadas o aisladas y no contar con otras vías alternativas para el intercambio de individuos o genes. Se pueden dar, sin embargo, casos de corredores que combinan necesidades de conservación y restauración; así, el deterioro de sus condiciones actuales se traduciría en un elevado impacto en la conectividad, pudiendo la mejora de esas condiciones a través de acciones de restauración incrementar de manera notoria la conectividad del conjunto de la red.


Finalmente se han obtenido para cada ecoperfil, dos conjuntos de corredores prioritarios para actuaciones de conservación y de restauración. Para ello, se han seleccionado el 10% de los corredores identificados con mayor valor de dPC en cada uno de los escenarios de referencia (Figura II.1 y II.2).

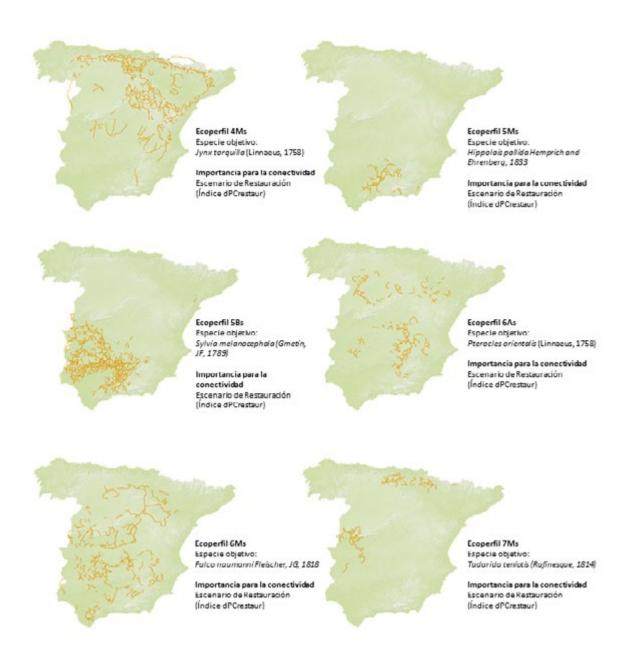

Figura II.1. Corredores prioritarios en escenario de conservación identificados para 12 ecoperfiles. La pérdida de estos corredores supone un impacto potencial sobre la conectividad global de la red relativamente mayor, por lo que es importante asegurar, al menos, el mantenimiento de sus condiciones actuales.

Figura II.1. (cont.) Corredores prioritarios en escenario de conservación identificados para 12 ecoperfiles. La pérdida de estos corredores supone un impacto potencial sobre la conectividad global de la red relativamente mayor, por lo que es importante asegurar, al menos, el mantenimiento de sus condiciones actuales.

Figura II.2. Corredores prioritarios en escenario de restauración identificados para 12 ecoperfiles. La mejora de las condiciones de estos corredores hasta unas condiciones ideales implicaría un beneficio máximo en términos de incremento de la conectividad global de la red.

Figura II.2. (cont.) Corredores prioritarios en escenario de restauración identificados para 12 ecoperfiles. La mejora de las condiciones de estos corredores hasta unas condiciones ideales implicaría un beneficio máximo en términos de incremento de la conectividad global de la red.

II.6 Consideraciones y limitaciones del estudio

En este trabajo se han aplicado herramientas con un marco conceptual y metodológico bien establecido, con gran potencial de aplicación en la planificación y gestión territoriales. Se trata de una primera aproximación que permite, en trabajos sucesivos de mayor detalle, abordar análisis de conectividad en un marco coherente y comparable.

Las extensas redes de corredores prioritarios obtenidas son susceptibles de vertebrar la conectividad ecológica a escala estatal, proporcionando un amplio abanico de opciones territoriales para seleccionar los mejores lugares sobre los que continuar avanzando en los análisis de conectividad.

En estudios posteriores, se recomienda identificar, adicionalmente a los caminos de coste mínimo, "franjas conectoras", es decir, franjas de anchura variable en torno a esos caminos, de manera que esa anchura depende de la calidad y permeabilidad del territorio situado en el entorno del camino de coste mínimo. Dichas franjas complementan y amplían de manera sustancial la información de los caminos de coste mínimo, pasando a observarse no solo el trazado del eje (parte central del corredor), sino la amplitud de la franja territorial sobre la cual es factible que las especie encuentren buenas condiciones para realizar sus movimientos. La identificación de estas franjas ayudaría a concretar las zonas de actuación preferente para la mejora de las condiciones de los corredores e incremento de la conectividad.

III. Cartografía de intersecciones entre corredores ecológicos y la red viaria por Comunidad Autónoma

Se indican para cada Comunidad Autónoma (Figura III.1 a Figura III.15), las intersecciones entre vías de transporte y corredores ecológicos modelizados a escala peninsular para cuatro ecoperfiles de mamíferos terrestres no voladores. Las intersecciones se han clasificado en cinco categorías de importancia (de A a E, siendo "A" la más alta y "E" la más baja) según la prioridad para restauración del corredor implicado. Véase el epígrafe 2.3.1.1 y Anexo II para detalles sobre metodología. Ecoperfiles y especies focales considerados en los análisis de conectividad: 1Mn: Genetta genetta; 2An: Felis silvestris, Mustela putorius; 2Mn: Atelerix algirus, Herpestes ichneumon, Lynx pardinus; 3Mn: Martes martes.

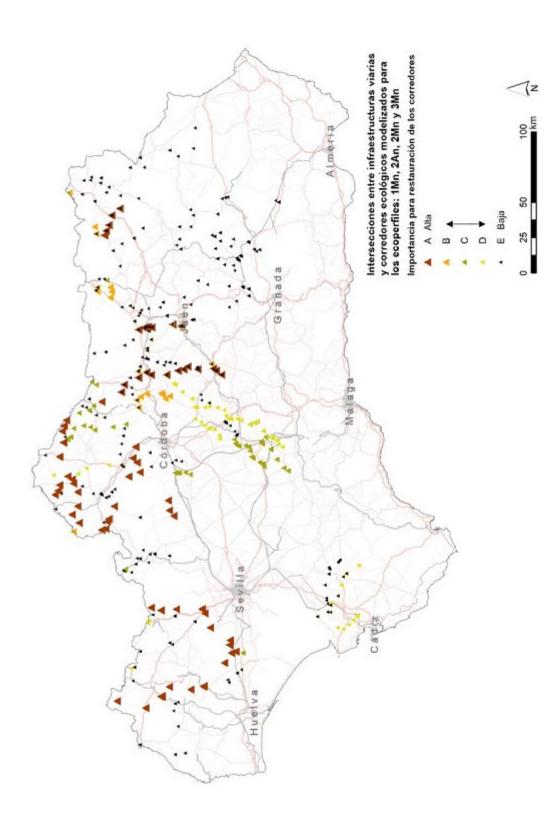


Figura III.1. Intersecciones entre vías de transporte y corredores ecológicos en Andalucía.

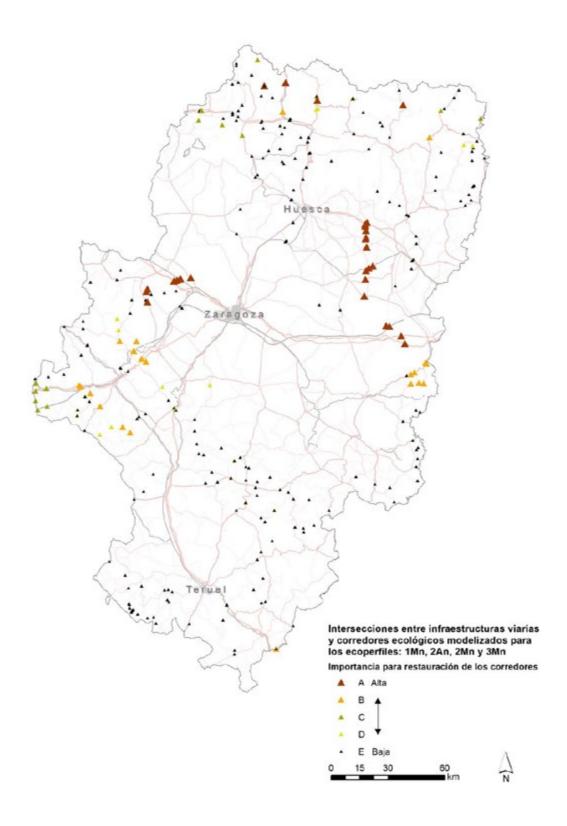


Figura III.2. Intersecciones entre vías de transporte y corredores ecológicos en Aragón.

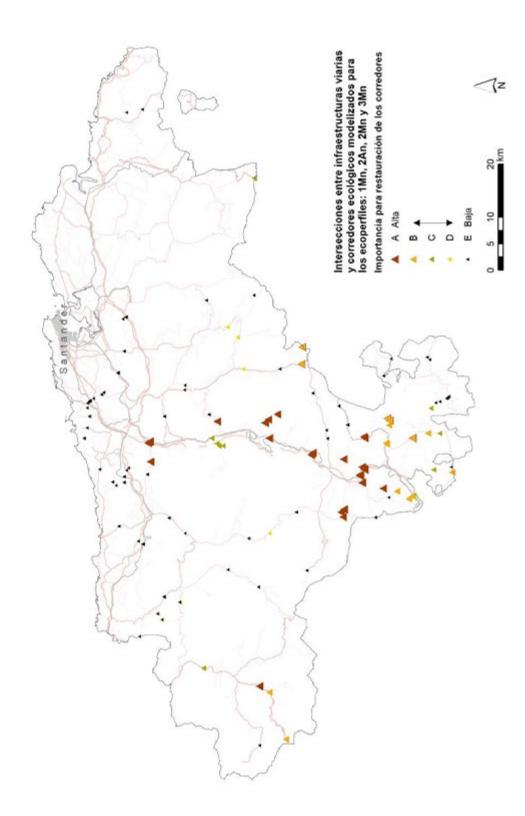
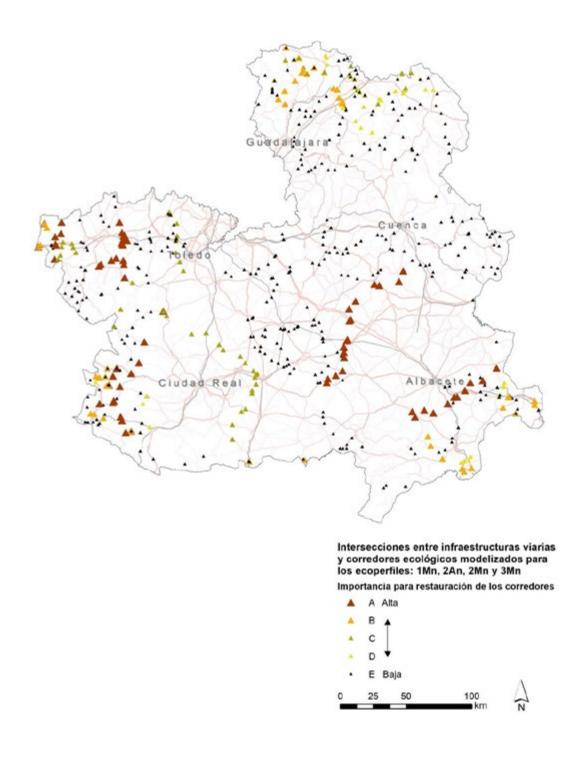
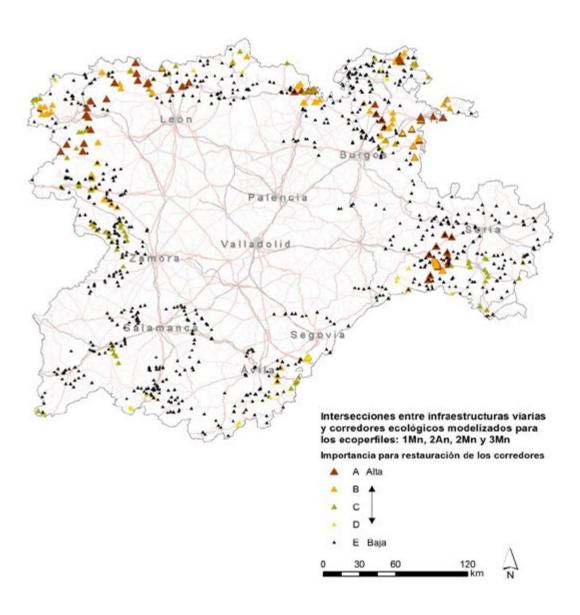
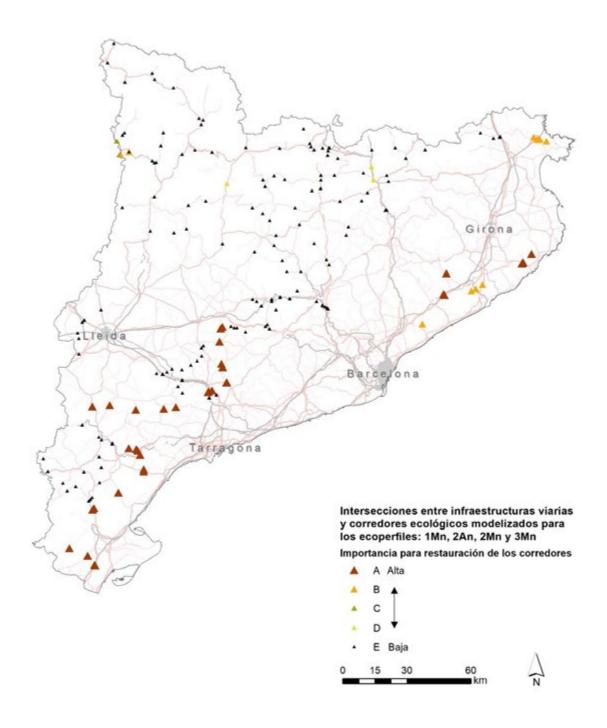
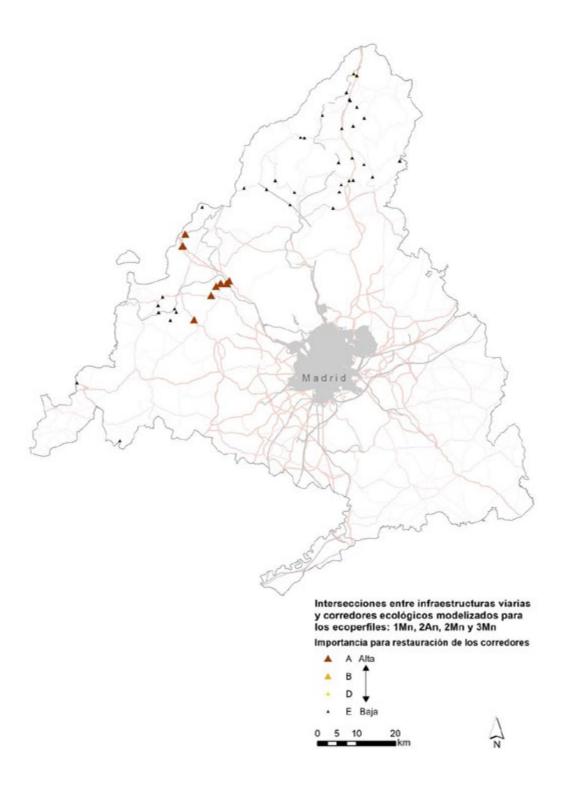
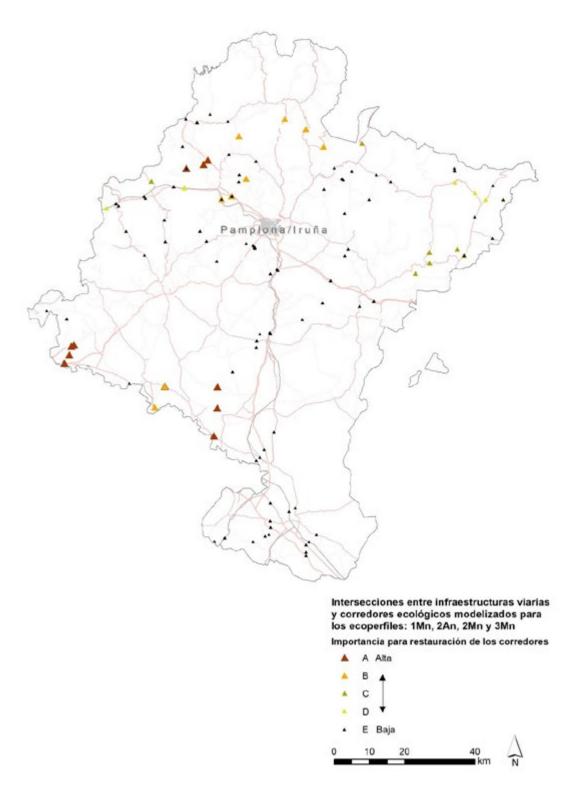



Figura III.3. Intersecciones entre vías de transporte y corredores ecológicos en Cantabria.

Figura III.4. Intersecciones entre vías de transporte y corredores ecológicos en Castila-La Mancha.


Figura III.5. Intersecciones entre vías de transporte y corredores ecológicos en Castila y León.

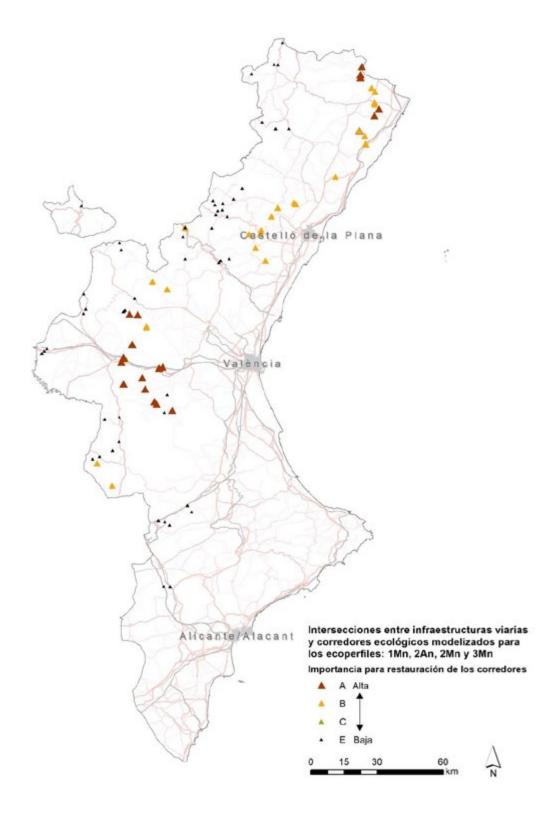

Figura III.6. Intersecciones entre vías de transporte y corredores ecológicos en Cataluña/Catalunya.

Figura III.7. Intersecciones entre vías de transporte y corredores ecológicos en la Comunidad de Madrid.

Figura III.8. Intersecciones entre vías de transporte y corredores ecológicos en la Comunidad Foral de Navarra.

Figura III.9. Intersecciones entre vías de transporte y corredores ecológicos en la Comunitat Valenciana.

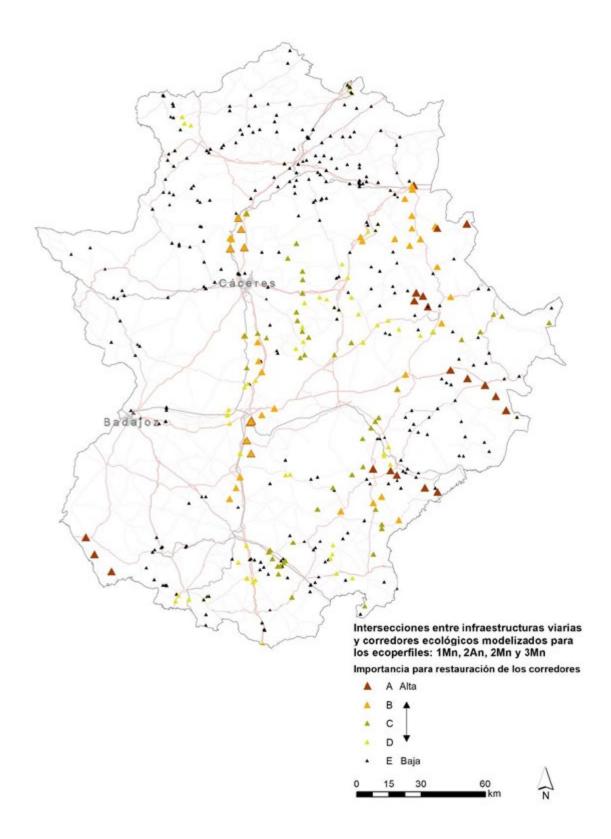


Figura III.10. Intersecciones entre vías de transporte y corredores ecológicos en Extremadura.

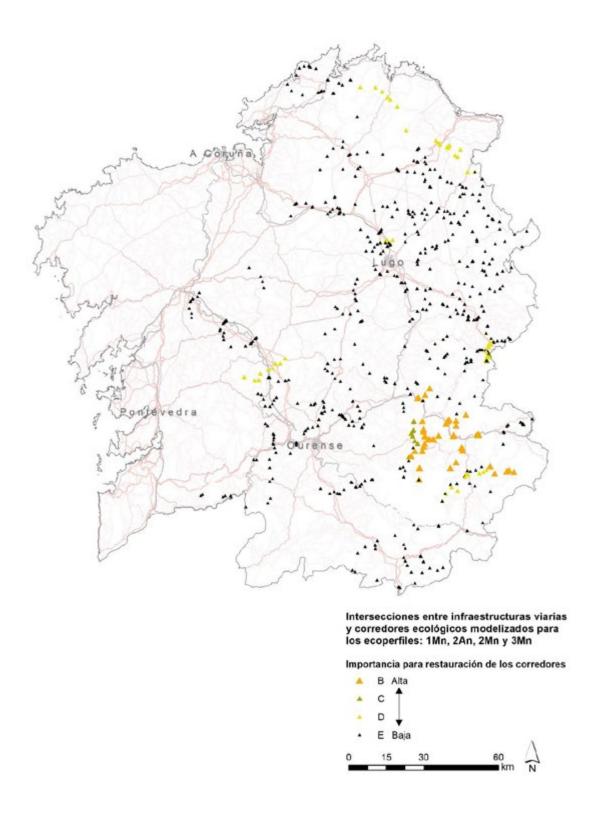
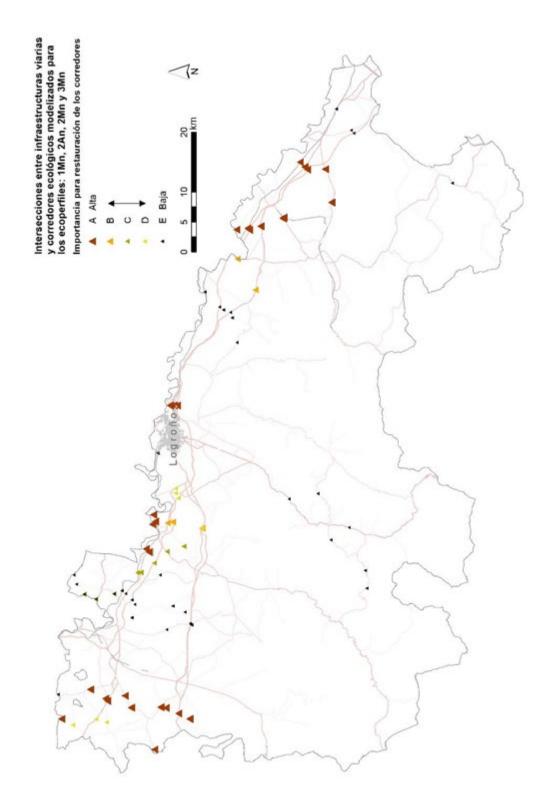
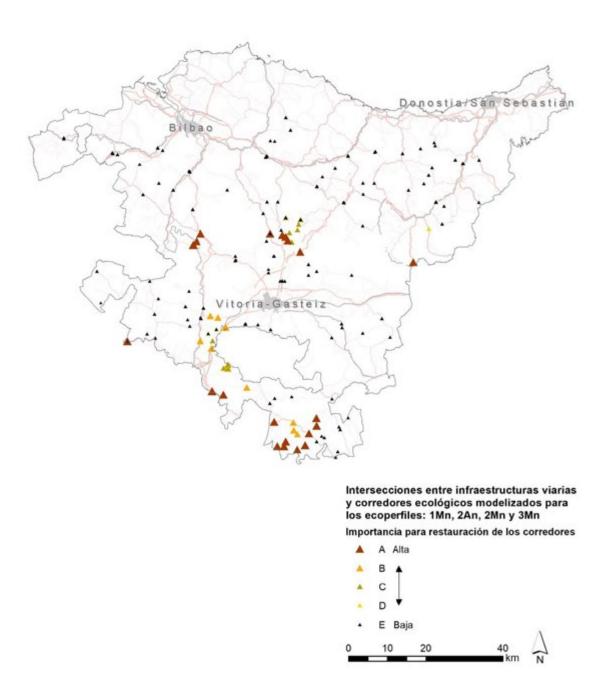
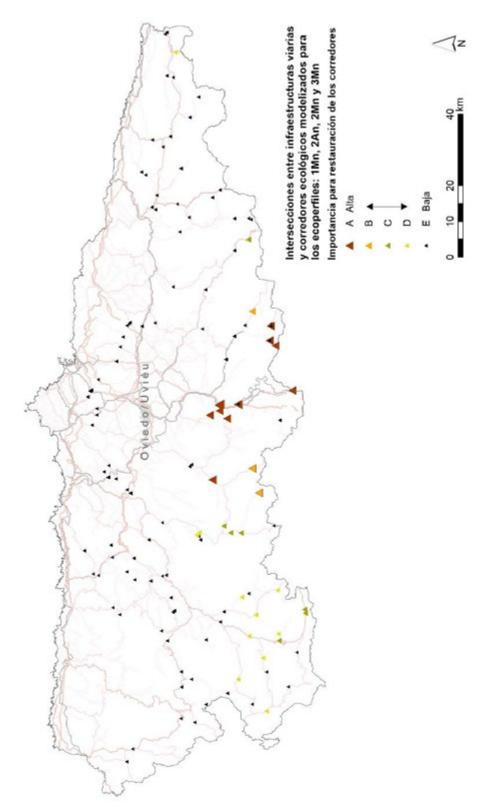


Figura III.11. Intersecciones entre vías de transporte y corredores ecológicos en Galicia.

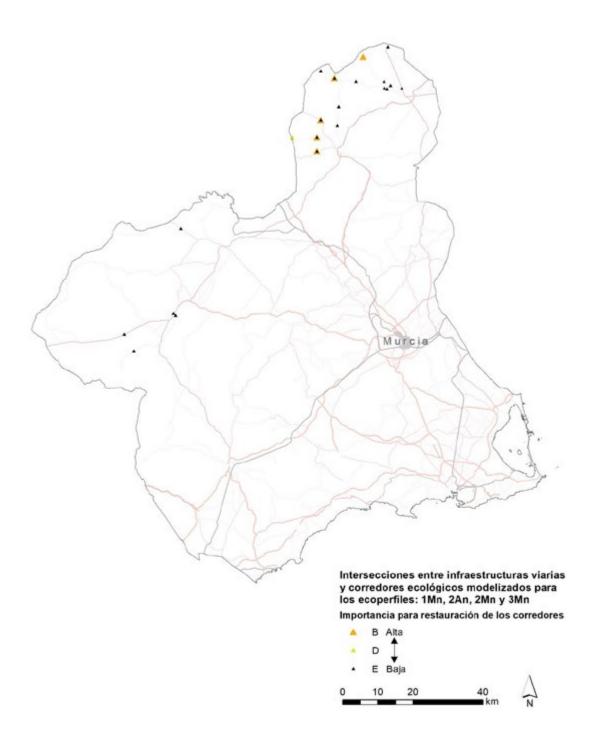

Figura III.12. Intersecciones entre vías de transporte y corredores ecológicos en La Rioja.

Figura III.13. Intersecciones entre vías de transporte y corredores ecológicos en País Vasco / Euskadi.

Figura III.14. Intersecciones entre vías de transporte y corredores ecológicos en el Principado de Asturias.

Figura III.15. Intersecciones entre vías de transporte y corredores ecológicos en la Región de Murcia.

IV. Comparación de enfoques metodológicos y nuevas aportaciones al documento de actualización de prescripciones técnicas para la identificación de áreas a desfragmentar.

En este anexo se resumen y justifican las principales aportaciones metodológicas y organizativas realizadas en la actualización del documento de prescripciones técnicas número 6 "Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras lineales de transporte en la biodiversidad" (MA-GRAMA 2013; en adelante, PT6-2013), Las variables que no se mencionan explícitamente se han calculado con el mismo sistema descrito en el documento de PT6-2013. Se hace referencia al presente documento (versión actualizada) como PT6-2023.

IV.1. Aportaciones estructurales y de contenido

IV.1.1. Esquema metodológico general, flujo de trabajo, resumen lógico del procedimiento y tipologías de cuadrículas identificadas

Al inicio del documento actualizado (en adelante PT6-2023), se ha incorporado una síntesis de las etapas del procedimiento y de la terminología de cuadrículas identificadas (Epígrafe 1.1), así como un esquema metodológico general que pretende facilitar la comprensión del flujo de trabajo (Figuras 1, 2, 3 y 4).

Este contenido, ausente en la PT6-2013, es esencial para obtener una visión global del procedimiento y facilitar la comprensión de la lógica que subyace al método.

Además, permite conocer de antemano, todas las variables consideradas en la priorización de áreas a desfragmentar, así como las tipologías de cuadrículas identificadas.

IV.1.2. Adecuación de la nomenclatura utilizada

Se ha detectado en la PT6-2013 la utilización de una nomenclatura que podría generar dudas en la identificación de las cuadrículas finalmente indicadas para actuaciones de desfragmentación. En dicho documento, los "Modelos de áreas prioritarias a desfragmentar" generaron "índices de **prioridad de mitigación** de efectos de vías de transporte" a partir de los cuales se seleccionaron cuadrículas a desfragmentar a nivel estatal y autonómico (véase epígrafe 4 de la PT6-2013). Sin embargo, las cuadrículas efectivamente prioritarias para actuaciones de mitigación, son aquellas identificadas mediante un análisis de coincidencias que considera, además de los índices antes mencionados, otras dos variables complementarias: a) las intersecciones entre conectores forestales y la red viaria y b) la densidad de accidentes con fauna silvestre (véase el epígrafe 5 de la PT6-2013).

En esta actualización (PT6-2023) se ha adaptado la nomenclatura de los índices antes referidos, así como la de las cuadrículas seleccionadas en base a éstos, evitando utilizar la palabra "prioritario/a" en etapas tempranas del desarrollo metodológico. Por tanto, en el presente documento, los dos índices resultantes de la integración de los índices de base (Epígrafe 2.2) pasan a identificarse como:

a) Índice de importancia para mitigación en áreas de patrimonio natural muy fragmentado

b) Índice de importancia para mitigación en áreas de patrimonio natural poco fragmentado

En consecuencia, las cuadrículas seleccionadas en los <u>epígrafes 2.2.1</u> y <u>2.2.2</u> se han identificado como *Cuadrículas importantes a desfragmentar a nivel estatal y Cuadrículas importantes a desfragmentar en el ámbito de las Comunidades Autónomas*.

En esta actualización el término "cuadrículas prioritarias" se refiere al resultado del primer nivel de análisis de coincidencias³⁹ que toma en cuenta, además de los índices antes referidos, tres variables complementarias:

- a) Intersecciones entre corredores ecológicos y la red viaria
- b) Densidad de accidentes con fauna silvestre
- c) Intersecciones entre la Red Nacional de Vías Pecuarias (RNVP) y la red viaria

IV.1.3. Información cartográfica: eliminación de "ruido", reorganización, presentación y nuevas aportaciones

En los <u>epígrafes 2.4</u> y <u>2.5</u> de esta actualización (PT6-2023) se han incluido los principales resultados cartográficos obtenidos en ámbito autonómico y a nivel estatal, respectivamente.

En el primero (Epígrafe 2.4), se recogen los mapas de las variables consideradas en los análisis de coincidencias 40 en cada Comunidad Autónoma. En todos ellos, dichas variables se han clasificado en tres categorías: Alta (3), Media (2) y Baja (1). Se recogen, además, la cartografía resultante de los análisis de coincidencias que reflejan la distribución de las cuadrículas prioritarias y de máxima prioridad a desfragmentar en ámbito autonómico.

En el <u>epígrafe 2.5</u>, se recoge un mapa con la distribución espacial de las <u>cuadrículas</u> de <u>máxima prioridad</u> a <u>desfragmentar a nivel estatal</u>, junto a una cartografía de más detalle que contextualiza dichas cuadrículas en el paisaje.

La cartografía generada en ámbito autonómico presentada en esta actualización se correspondería a la cartografía de las fichas de las comunidades autónomas (CC.AA.) de la PT6-2013. Sin embargo, a diferencia del documento anterior, en la PT6-2023, la cartografía resultante de pasos intermedios de los procedimientos (que pudiera resultar de interés), se presenta en el epígrafe correspondiente, en el cuerpo del texto o en un anexo. Por otro lado, se han incorporado a los mapas de cuadrículas prioritarias a desfragmentar información referente a los tramos y nombres oficiales de las vías de transporte que intersectan dichas cuadrículas.

[39] Excepcionalmente, por falta de información de base referentes a las variables complementarias, no ha sido posible realizar los análisis de coincidencias para las CC. AA. insulares. En estos casos específicos, las cuadrículas indicadas para acciones de desfragmentación son las identificadas, únicamente, en base a los índices de importancia para mitigación de los efectos de las ILT sobre la biodiversidad.

[40] A) Áreas importantes para desfragmentación en ámbito autonómico, b) Áreas con intersecciones entre corredores ecológicos e infraestructuras viarias, c) Densidad de accidentes con fauna silvestre, d) Intersecciones entre vías pecuarias y la red viaria y e Cuadrículas prioritarias para desfragmentación en áreas con patrimonio natural poco fragmentado y muy fragmentado.

A continuación, se justifica la eliminación de cartografía del epígrafe 2.4 de la PT6-2023, que anteriormente constaba en las "Fichas de las CC. AA." de la PT6-2013. Además, en la Tabla IV.1, se presentan las equivalencias entre las cartografías generadas para cada CC. AA. en ambos trabajos.

o Cartografía eliminada del epígrafe 2 4

a) "Áreas a desfragmentar. Selección a nivel estatal" (PT6-2013)

Esta información se obtuvo del ensayo metodológico realizado en 2013, pero en realidad, no se utilizó en ningún paso posterior del procedimiento, debido a la irregularidad en la distribución de las cuadrículas seleccionadas a nivel estatal⁴¹. Por otra parte, en la identificación de dichas cuadrículas no se integró información sobre dos elementos cruciales en la priorización de áreas donde aplicar medidas de desfragmentación, como son la conectividad ecológica y la siniestralidad causada por fauna silvestre.

La presentación a escala autonómica de estos mapas (obtenidos del recorte del mapa estatal) en las fichas de las CC. AA., podría llevar a interpretaciones inexactas y generar dudas sobre dónde es efectivamente prioritario llevar a cabo actuaciones de desfragmentación ya que en dichas fichas se presentan para cada Comunidad Autónoma. tres mapas que indican "áreas a desfragmentar".

Por esta razón, en el presente trabajo, la cartografía equivalente a la de las "Áreas a desfragmentar. Selección a nivel estatal", se presenta a escala adecuada, en el cuerpo del texto del epígrafe correspondiente (Epígrafe 2.2.1 y Figura 20), lo que permite observar la distribución de dichas cuadrículas desde una perspectiva global.

b) "Áreas con intersecciones entre infraestructuras viarias y conectores forestales" (PT6- 2013)

En esta cartografía se representaban puntos de cruce entre vías de transporte y conectores forestales. Se ha eliminado del <u>Epígrafe 2.4</u> por ser resultado de un paso intermedio del procedimiento que tiene por objetivo identificar cuadrículas importantes para desfragmentación, según relevancia de los conectores para la conectividad forestal y el tipo de vía implicada en dichos cruces.

En el presente trabajo, la cartografía equivalente a los puntos de cruce antes mencionados se presenta en el Anexo III, mientras que en el epígrafe 2.4 se presentan los resultados finales del procedimiento "Áreas con intersecciones entre corredores ecológicos e infraestructuras viarias en CC. AA.". Al igual que las demás variables, para la posterior integración de estas áreas en los análisis de coincidencias se han clasificado según tres categorías de importancia.

[41] Las etapas posteriores del desarrollo metodológico siguen en base a la selección proporcional de cuadrículas a nivel autonómico (Véase Epígrafes 4.3-b y 5.3 de la PT6-2013).

[42] A) Áreas a desfragmentar. Selección a nivel estatal, b) Áreas a desfragmentar. Selección a nivel autonómico y c) Áreas en las que coinciden distintos criterios

En la Tabla IV.1 se resumen las equivalencias entre la cartografía obtenida en ámbito autonómico en la PT6-2013 y en esta actualización.

Tabla IV.1. Equivalencias y presentación de la cartografía obtenida en ámbito autonómico en la PT6-2013 y en esta actualización.

	PT6-2013	PT6-2023
Presentación	Fichas descriptivas (Epígrafe 6.5)	Cartografía obtenida por Comunidad Autónoma (Epígrafe 2.4)
	Áreas a desfragmentar. Selección a nivel estatal	Mapa de distribución de cuadrículas importantes a desfragmentar a nivel estatal (Se presenta en el cuerpo del texto - Figura 20 – Epígrafe 2.2.1)
	Áreas a desfragmentar. Selección a nivel autonómico	Áreas importantes a desfragmentar en el ámbito autonómico
Equivalencias	Áreas con intersecciones entre in- fraestructuras viarias y conectores forestales	Áreas con intersecciones entre corre- dores ecológicos e infraestructuras viarias en el ámbito autonómico
Equiv	Densidad de accidentes con fauna silvestre	Densidad de accidentes con fauna silvestre
	No se consideró	Intersecciones entre vías pecuarias y la red viaria
	Áreas en las que coinciden distintos criterios	Cuadrículas prioritarias para desfrag- mentación en áreas con patrimonio natural poco fragmentado y muy frag- mentado

Como se ha mencionado anteriormente, en el **Epígrafe 2.5.1** se presenta la cartografía de las **Cuadrículas de Máxima Prioridad a Nivel Estatal.** Estos resultados constituyen una **nueva aportación** que se describe brevemente en este anexo y con más detalles en el **Epígrafe 2.5**.

IV. 2. Diferencias entre los enfoques metodológicos de la PT6-2013 y de esta actualización

IV.2.1 Índice de vulnerabilidad biológica (VB)

Este índice se calcula para evaluar el grado de vulnerabilidad biológica de un determinado territorio a la presencia de infraestructuras lineales de transporte. A mayor valor del índice, más sensible es la biodiversidad a los efectos de dichas infraestructuras.

El VB es el resultado de la integración de una serie de subíndices y su composición puede verse alterada según disponibilidad de información e intereses específicos del análisis. Por otro lado, cada uno de estos subíndices tiene su propio desarrollo metodológico, que también puede ser susceptible a variaciones de diferente naturaleza.

En este trabajo, siguiendo las directrices de la PT6-2013 y buscando mejorar la robustez del *índice de vulnerabilidad biológi*- ca, se ha incorporado a su composición el subíndice de "Importancia para la conectividad ecológica". La incorporación de esta variable incrementa el valor de vulnerabilidad biológica en las zonas del territorio por donde discurren las rutas preferentes de desplazamiento de especies contempladas en 12 ecoperfiles⁴³ de aves y mamíferos amenazados en España. Es decir, se pasa a considerar que tienen especial valor aquellas zonas del territorio que conectan funcionalmente espacios naturales de singular relevancia para aves y mamíferos, y que permiten entre otros procesos ecológicos, el intercambio genético entre poblaciones de especies amenazadas de dichos grupos taxonómicos.

En la Tabla IV.2 se presentan las diferencias en la composición de los subíndices que integran los *Índices de vulnerabilidad biológica* en la PT6-2013 y en la presente actualización. Por otro lado, en los epígrafes subsecuentes, se describen y justifican las adaptaciones realizadas en los procedimientos de cálculo de parte de los demás subíndices.

Tabla IV.2. Diferencias entre los subíndices que componen los índices de vulnerabilidad biológica en la PT6-2013 y en esta actualización.

PT6-2013	PT6-2023
Índice de áreas agrarias y forestales de alto valor natural	Índice de áreas agrarias de alto valor natural
Índice de biodiversidad	Índice de biodiversidad
Índice de riqueza de especies objetivo	Índice de riqueza de especies objetivo
Índice de abundancia de ríos y humedales	Índice de abundancia de ríos y humedales
Índice de presencia de áreas naturales protegidas	Índice de presencia de áreas naturales protegidas
No se consideró ⁴⁴	Índice de importancia para la conectividad ecológica

[43] Grupos de especies de similar perfil ecológico (Karlson y Mörtberg 2015, Vos et al. 2001).

[44] Para más detalle, <u>véase Epígrafe IV.2.1.5</u> de este anexo.

IV.2.1.1 Índice de Áreas Agrarias de Alto Valor Natural (AVN)

De acuerdo con los requerimientos del proyecto, este índice se debe actualizar en base a la cartografía del trabajo "Propuesta Metodológica AVN (Alto Valor Natural) homogénea para España" (Olivero y Martín, 2021). A diferencia del trabajo de referencia de la PT6-2013 (MARM 2011), la actual referencia no generó cartografía equivalente a "áreas forestales de alto valor natural", razón por la que en esta actualización se ha considerado únicamente la variable "Áreas agrarias de alto valor natural" (Tabla IV.3).

IV.2.1.2 Índice de Biodiversidad (IB)

Se ha sustituido el índice de biodiversidad utilizado para el cálculo del Índice de vulnerabilidad biológica en la PT6-2013 (Rey Benayas y De la Montaña 2003), por el desarrollado por Díaz et al. (2020). Este último es el índice propuesto en la *Guía Metodológica para la Identificación de los Elementos de la Infraestructura Verde en España* para la valoración de la biodiversidad. Dicho índice se consideró, además, en el desarrollo de otros proyectos⁴⁵ recientes impulsados por el MITECO y cuyos resultados se han incorporado al presente trabajo. En la Tabla IV.4 se muestran algunas de las principales diferencias entre ambos enfoques metodológicos.

Tabla IV.3. Diferencias entre los índices de Áreas de Alto Valor Natural en la PT6-2013 y en esta actualización.

PT6-2023
Se han considerado áreas agrarias de alto valor natural

[45] Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica (MITECO, 2023).

Tabla IV.4. Diferencias entre los índices de biodiversidad en la PT6-2013 y en esta actualización.

	PT6-2013	PT6-2023
Base	Rey Benayas y De la Montaña 2003	Díaz et al. 2020
Grupos taxonómicos	Vertebrados (anfibios, reptiles, aves y mamíferos) inventariados en España	Flora y fauna (vertebrados e invertebrados) amenazados en España
Planteamiento general	Integra información sobre diver- sidad, rareza y vulnerabilidad de las especies	Integra información sobre diversidad, vulnerabilidad, papel ecosistémico y disponibilidad y calidad de información sobre las especies (el mejor conocimiento sobre las especies incrementa el valor del índice)

IV.2.1.3 Índice de Riqueza de Especies Objetivo (REO)

De acuerdo con los requerimientos del proyecto, el listado de especies objetivo se ha definido en base a las versiones actualizadas de las bases de datos de ARE-NA2⁴⁶ y del proyecto SAFE⁴⁷. Esta última ha proporcionado información que ha permitido la inclusión de anfibios en referido listado (no incluidos anteriormente).

En la tabla IV.5 se presentan las diferencias entre grupos taxonómicos y número de especies considerados en el cálculo del *Índice de Especies Objetivo* en la PT6-2013 y en el presente trabajo. El cálculo del índice se ha llevado a cabo mediante la misma fórmula en ambos trabajos.

[46] Información proporcionada por la Dirección General de Tráfico, referente al período 2012-2021.

[47] Proyecto SAFE – Stop Atropellos de Fauna en España. Información referente al período 2020-2022.

Tabla IV.5. Diferencias entre los índices de biodiversidad en la PT6-2013 y en esta actualización.

	PT6-2013	PT6-2023
Número de especies	33 especies	58 especies
Grupos taxonómicos	Reptiles Aves Mamíferos	Reptiles Aves Mamíferos Anfibios

IV.2.1.4 Índice de Áreas Naturales Protegidas (ANP)

Conceptualmente, el índice de Áreas Naturales Protegidas calculado en la PT6-2013 consideraba que todas las figuras de protección contribuyen, en la misma medida, para la conservación de la biodiversidad.

En el presente trabajo se han tenido en cuenta las mismas categorías de Áreas Naturales Protegidos (ANP) del trabajo anterior, sin embargo, se ha realizado una clasificación de dichas áreas, considerando tres categorías, según objetivos generales de gestión y restricciones im-

puestas por las diferentes figuras de protección (EUROPARC 2008, UICN 2008). Este procedimiento ha permitido ponderar el valor del territorio en función de los bienes y valores a proteger y de los objetivos de gestión a cumplir de las diferentes ANP. Bajo este enfoque, la presencia de un Parque Nacional en el territorio tiene más valor para la conservación de la biodiversidad que una Reserva de la Biosfera, por ejemplo.

En la tabla IV.6 se muestran las diferencias en las aproximaciones para cálculo del *Índice de Áreas Naturales Protegidas* en la PT6-2013 y en el actual trabajo.

Tabla IV.6. Diferencias entre los Índices de Áreas Naturales Protegidas en la PT6-2013 y en esta actualización.

PT6-2013	PT6-2023
El índice es el resultado de la suma directa de la presencia (1)/ausencia (0) de las distintas categorías de ANP en las cuadrículas de 1km²	El índice es el resultado de la suma pon- derada de la presencia de las distintas categorías de ANP en las cuadrículas de 1km² Los factores de ponderación se integran en 3 clases y se asignan en función de los bienes y valores a proteger y de los objetivos de gestión a cumplir de las ANP

271

IV.2.1.5 Índice de Importancia para la Conectividad Ecológica (ICE)

En el momento del desarrollo de la PT6-2013 no se disponía de información referente a corredores ecológicos a nivel estatal. Tan solo se pudo incorporar dicha información para complementar el cálculo del *Índice de Vulnerabilidad Biológica* en Extremadura (Véase Figura 4.1 de la PT6-2013). Dicha incorporación se llevó a cabo de forma binaria, asignando un valor de 50 a cuadrículas que se encontraban dentro de los corredores ecológicos y 0 a las demás, sumándose este valor al del resto de subíndices que componen el *índice de vulnerabilidad biológica*.

En el presente trabajo se ha ampliado y mejorado esta información, incorporando al cálculo del *Índice de Vulnerabilidad Biológica*, datos referentes a los corredores ecológicos modelizados en ámbito peninsular para 12 ecoperfiles de aves y mamíferos amenazados. Dichos datos se reflejan en el ICE, calculado como la superficie (expresada en porcentaje) que ocupan los corredores dentro de cada cuadrícula UTM de 1 km².

En la tabla IV.7 se muestran las diferencias en la integración de corredores ecológicos en el cálculo del *Índice de Vulnerabilidad Biológica* en la PT6-2013 y en esta actualización.

Tabla IV.7. Diferencias en la integración de corredores ecológicos en el cálculo del Índice de Vulnerabilidad Biológica en la PT6-2013 y en esta actualización.

	PT6-2013	PT6-2023
Ámbito Geográfico	Extremadura	España peninsular
Información de base	Cartografía de corredores ecológicos en Extremadura (Aportada por la CA)	Cartografía de conectividad ecológica e infraestructura verde generada a escala Pe- ninsular en la SGBTM ⁴⁸
Método de cálculo	Binario - Cuadrículas con co- rredores (50)/ cuadrículas sin corredores (0)	Proporción de superficie de cada cuadrícula ocupada por corredores ecológicos

[48] Cartografía resultante del trabajo Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica (2023).

IV.2.2 Variables complementarias

IV.2.2.1 Intersecciones entre la red viaria y corredores ecológicos

Destacan dos aspectos principales de esta variable respecto a sus enfoques metodológicos en la PT6-2013 y PT6-2023. Por un lado, el diagnóstico de los corredores (el planteamiento general del estudio de evaluación de la conectividad) y por otro, el enfoque de valoración de las intersecciones entre los corredores identificados y la red viaria.

A continuación, se comentan ambos aspectos:

Planteamiento general de evaluación de la conectividad: ambos estudios se han realizado mediante la misma metodología y base científica (Saura y Torné 2009, Saura y Pascual-Hortal 2007). En el estudio anterior (PT6-2013), la conectividad se evaluó considerando especies forestales con diferentes capacidades de dispersión: 1, 5, 10 y 25 km. En el presente trabajo, el diagnóstico de la conectividad ha considerado 12 ecoperfiles con diferentes grados de vulnerabilidad a la fragmentación y con diferentes preferencias de hábitat: a) Generalistas, b) En mosaico y c) Especialistas (bosques densos, bosques claros, matorral, esteparias y riparias). Así, se ha ampliado sustancialmente la funcionalidad de los corredores identificados y la cobertura geográfica de dichos corredores en la península.

La información generada en la reciente evaluación de la conectividad se ha utilizado en dos etapas distintas del procedimiento de actualización de la PT6:

- 1) En el cálculo del Índice de Importancia para la conectividad ecológica (Epígrafe 2.1.1.6), dónde se ha considerado los corredores identificados para la totalidad de ecoperfiles.
- 2) En la obtención de la variable complementaria Intersecciones entre la red viaria y corredores ecológicos (Epígrafe 2.3.1.1). En este caso se han considerado únicamente los corredores identificados para los 4 ecoperfiles de especies no voladoras, ya que estos comprenden las especies más afectadas por los efectos barrera de las ILT y tienen tasas de atropello y siniestralidad en carretera más altas.

Tanto el estudio anterior como el actual se fundamentan en la detección de corredores ecológicos en base a la identificación de caminos de mínimo coste sobre superficies de resistencia 49 que caracterizan la heterogeneidad y permeabilidad del paisaje. En el estudio anterior la asignación de valores de resistencia se llevó a cabo mediante criterio experto, mientras que, en el estudio más reciente, dichas superficies se han estimado mediante el cálculo de modelos de distribución de las especies objetivo, procedimiento más repetible y que suele dar mejores resultados (Keeley et al. 2016).

Finalmente, en la reciente evaluación de la conectividad se incluye también información transfronteriza (ausente en la PT6-2013), que ha permitido identificar corredores que discurren por zonas adyacentes al territorio español.

[49] Esta resistencia representa el coste energético, mortalidad o dificultad de atravesar cada celda del paisaje en respuesta a las diferentes características consideradas.

Valoración de las intersecciones entre los corredores identificados y la red viaria: una de las etapas del procedimiento de valoración de las cuadrículas según la presencia de intersecciones entre la red viaria y los corredores ecológicos, consiste en la jerarquización de los corredores en función de su importancia para la conectividad. En la PT6-2013 dicha jerarquización se realizó en base a un índice de conectividad calculado en un escenario de conservación (opción Link Removal en CONEFOR). Mediante este enfoque, se obtiene un índice que informa sobre la contribución de cada corredor en el mantenimiento de la conectividad global⁵⁰. En el actual trabajo, dicha jerarquización se ha llevado a cabo en base a un índice de conectividad calculado en un escenario de restauración (opción Link Change en CONEFOR). En este caso, el índice calculado discrimina los corredores que. en caso de ser restaurados, aportarían mayor valor a la conectividad global del paisaje.

La decisión de cambiar el parámetro de jerarquización de los corredores se debe a la propia naturaleza de este trabajo que pretende identificar áreas prioritarias para la desfragmentación /restauración de la conectividad de hábitats afectados por infraestructuras lineales de trasporte.

En la tabla IV.8 se muestra un resumen comparativo entre enfoques metodológicos utilizados en la evaluación de la conectividad en la PT6-2013 y en esta actualización. En la tabla IV.9 se indican las diferencias en la valoración de las intersecciones entre corredores ecológicos y la red viaria en ambos trabajos.

[50] Cuanto más alto es el valor del índice mayor sería la pérdida en conectividad global, en caso de deterioro de las condiciones del corredor.

Tabla IV.8. Enfoques metodológicos en la evaluación de la conectividad en la PT6-2013 y en esta actualización (PT6-2023).

	PT6-2013	PT6-2023
Base científica	CONEFOR (Saura y Torné 2009, Saura y Rubio 2010)	CONEFOR (Saura y Torné 2009, Saura y Rubio 2010)
Ecoperfiles	Mamíferos forestales con 4 distancias dispersivas distintas	12 ecoperfiles de mamíferos te- rrestres con diferentes grados de vulnerabilidad a la fragmentación y preferencias de hábitat: Forestal, Mosaico, Generalistas y Especialis- tas (bosques densos, bosques cla- ros, matorral, esteparias y riparias)
Nodos	Parches forestales	Parches de hábitats seleccionadas en base a la probabilidad de pre- sencia de las especies focales
Estimación de su- perficie de resisten- cia	Criterio experto	Modelización matemática de la distribución de especies objetivo
Ámbito geográfico	España peninsular e insu- lar	España peninsular y territorio transfronterizo

Tabla IV.9. Diferencias en la valoración de las intersecciones entre corredores ecológicos y la red viaria en la PT6-2013 y en esta actualización.

	PT6-2013	PT6-2023
Valor del conec- tor implicado en la intersección	Basado en índices de conec- tividad calculados en esce- narios de conservación	Basado en índices de conectividad calculados en escenarios de restauración
Salida Cartográfica	Puntos de intersección clasificados en 5 categorías según importancia del co- nector implicado (Paso inter- medio del procedimiento)	Cuadrículas de 1km² clasificadas en 3 categorías según importancia del conector y del tipo de vía impli- cados en las intersecciones (Última etapa del procedimiento. Variable clasificada para su integración en los análisis de coincidencias)

IV.2.2.2 Densidad de accidentes con fauna silvestre

En la PT6-2013 la información disponible sobre accidentes con fauna silvestre no estaba georreferenciada, estando la localización de los accidentes referida a los puntos kilométricos de las vías de transporte. Tampoco se pudo obtener información de accidentes para la totalidad del territorio (no se consiguieron datos para el País Vasco).

En el actual trabajo se ha podido avanzar notablemente tanto respecto al número

de registros como a la precisión y cobertura espacial de la información sobre siniestralidad involucrando fauna silvestre. Se han obtenido datos para la totalidad del territorio estudiado (España peninsular e insular) y se ha contado con información georreferenciada sobre los accidentes en todas las CC. AA., excepto en Cataluña⁵¹.

En la tabla IV.10 se muestran las principales diferencias en la información de base para el cálculo de *Densidad de Accidentes con Animales Silvestres* en la PT6-2013 y en esta actualización.

Tabla IV.10. Diferencias en el cálculo de Densidad de Accidentes con Animales Silvestres en la PT6-2013 y en esta actualización (PT6-2023).

	PT6-2013	PT6-2023
Nº de Accidentes	25.390	92.734
Cartografiados	(registrados entre 2007-2011)	(Registrados entre 2018-2021)
Cobertura Geográfica	Sin datos para País Vasco	España Peninsular e insular
Precisión de la Infor-		Coordenadas geográficas
mación Punto kilométrico de la vía		(Excepto en Cataluña)

[51] Aunque en la base de datos enviada por la Generalitat los registros de accidentes dispongan de coordenadas geográficas, se nos ha aclarado que dichas coordenadas han sido calculadas a partir del punto kilométrico. En el caso específico de Cataluña tampoco ha sido posible distinguir entre fauna doméstica-silvestre, por lo que los análisis se realizaron considerando la totalidad de registros de accidentes con información válida de localización.

Por otro lado, debemos señalar que, aunque disponemos de registros válidos georreferenciados para Baleares y Canarias, finalmente no ha sido posible utilizar dicha información porque el bajo número de registros disponibles para ambos archipiélagos imposibilitaba cumplir con los criterios del análisis de coincidencias de forma similar al resto de CC. AA.

IV.2.2.3 Intersecciones entre la Red Nacional de Vías Pecuarias (RNVP) y la red viaria

Esta variable no se consideró en el documento PT6-2013. Su inclusión actual en los procedimientos de priorización de áreas a desfragmentar (Tabla IV.11) se justifica en el contexto legal que remarca la necesidad de otorgar un papel prioritario a las vías pecuarias como corredores ecológicos funcionales (Ley 42/2007, de 13 de diciembre, del Patrimonio Natural y de la Biodiversidad), así como en la necesidad de alineamiento conceptual y operativo entre la Estrategia de Desfragmentación de Hábitat Afectados por Infraestructuras Lineales de Transporte y la Estrategia Nacional de la Infraestructura Verde.

En los análisis realizados en ámbito autonómico las intersecciones entre la red viaria y las vías pecuarias se han incorporado al procedimiento como un factor de ajuste del grado de prioridad de las cuadrículas. A cambio, en los análisis de identificación de cuadrículas de máxima prioridad a nivel estatal (en los que se pretendía afinar aún más los resultados), dichas intersecciones se han incorporado como un factor de restricción, es decir para que una cuadrícula se determine como de máxima prioridad a desfragmentar a nivel estatal debe contener una o más intersecciones entre vías pecuarias y la red viaria.

Tabla IV.11. Consideración de intersecciones entre vías pecuarias y la red viaria en este trabajo.

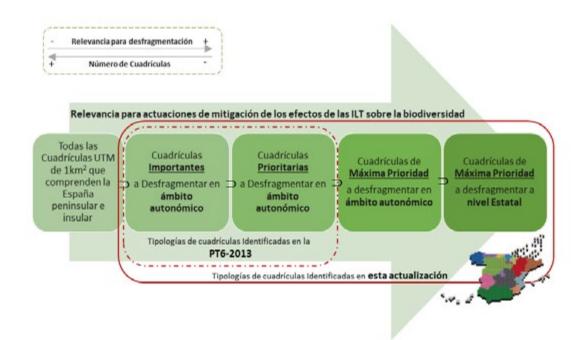
PT6-2013	PT6-2023
No se consideraron	Análisis en ámbito autonómico: Se han considerado como un factor de ajuste, al alza, del grado de prioridad de una cuadrícula.
	Análisis a nivel estatal : Se han considerado como una variable restrictiva.

IV.2.3 Presentación de cuadrículas prioritarias a desfragmentar en ámbito autonómico

Tanto en la PT6-2013 como en esta actualización, el desarrollo metodológico se basa en el planteamiento de dos escenarios distintos: a) áreas con patrimonio natural muy fragmentado y b) áreas con patrimonio natural poco fragmentado. En el trabajo anterior, se combinaron los resultados obtenidos para dichos escenarios en un único subconjunto de cuadrículas (Véanse los mapas "Áreas en las que

coinciden distintos criterios" incluidos en las fichas de las CC. AA. de la PT6-2013).

En el actual trabajo se ha decidido mantener ambos subconjuntos de cuadrículas identificados por separado para asegurar la coherencia entre el desarrollo metodológico y los resultados obtenidos y, con el objetivo adicional de facilitar la búsqueda de diferentes fuentes de financiación (enfocadas a la conservación o a la restauración) en función del contexto de las cuadrículas identificadas (Tabla IV.12).


Tabla IV.12. Diferencias en la presentación de cuadrículas prioritarias para desfragmentación en ámbito autonómico en la PT6-2013 y en esta actualización.

PT6-2013	PT6-2023
Un conjunto de cuadrículas prioritarias / CC. AA. Presentación unificada de las cuadrículas prioritarias para desfragmentación en áreas con patrimonio natural muy fragmentado y poco fragmentado.	Dos conjuntos de cuadrículas prioritarias /CC. AA. a) Un conjunto de cuadrículas prioritarias para desfragmentación en áreas con patrimonio natural muy fragmentado. a) Un conjunto de cuadrículas prioritarias para desfragmentación en áreas con pa-
	trimonio natural poco fragmentado.

IV.2.4 Nueva tipología de cuadrículas identificadas

En esta actualización se ha incorporado un nuevo procedimiento que ha permitido la identificación de cuadrículas de máxima prioridad a desfragmentar tanto en ámbito autonómico, como a nivel estatal. Dicho procedimiento se basa en el filtrado progresivo de cuadrículas mediante

análisis de coincidencias cada vez más restrictivos que han permitido afinar los resultados y precisar las áreas más relevantes para actuaciones de permeabilización de las vías de transporte (Figura IV.1).

Figura IV.1. Tipologías de cuadrículas identificadas en la PT6-2013 y en esta actualización (PT6-2023).

4 Bibliografía

Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, et al. 2003. The application of 'least-cost' modelling as a functional landscape model. Landscape Urban Plan 64: 233–247.

Agencia Estatal de Meteorología. 2011. *Iberian climate atlas. Air temperature and precipitation (1971-2000)*. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente y Medio Rural y Marino.

Barbosa, AM, Real, R, Olivero, J, Vargas, JM. 2003. Otter (*Lutra lutra*) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biological Conservation 114: 377-387.

Beier, P. 2019. A rule of thumb for widths of conservation corridors. Conservation Biology 33: 976-978. https://doi.org/10.1111/cobi.13256

Beier P, Majka DR, Spencer WD. 2008. Forks in the road: choices in procedures for designing wildland linkages. Conservation Biology 22:836–851. https://doi.org/10.1111/j.1523-1739.2008.00942.x

Bentrup, G. 2008. Conservation buffers: design guidelines for buffers, corridors, and greenways. Gen. Tech. Rep. SRS-109. Asheville, NC: USDA, Forest Service, Southern Research Station. Disponible en https://www.fs.usda.gov/nac/buffers/docs/references.pdf

Brudvig LA, Leroux SJ, Albert CH, Bruna EM, Davies KF, Ewers RM, et al. 2017. Evaluating conceptual models of landscape change. Ecography 40(1):74–84.

Coffin, AW. 2007. From roadkill to road ecology: a review of the ecological effects of roads. *Journal of Transport Geography* 15: 396–406.

Costanza, JK, Terando, AJ. 2019. Landscape Connectivity Planning for Adaptation to Future Climate and Land-Use Change. *Current Landscape Ecology Reports* 4: 1–13. https://doi.org/10.1007/s40823-019-0035-2

Daily, GC, Ehrlich, PR, Haddad, NM. 1993. Double keystone bird in a keystone species complex. Proceedings of the National Academy of Sciences 90 (2): 592-594.

Díaz M, Concepción E, Oviedo J, Caparros A, Farizo B, Campos P. 2020. A comprehensive index for threatened biodiversity valuation. Ecological Indicators 108. DOI: https://doi.org/10.1016/j.ecolind.2019.105696

EUROPARC-España. 2008. Procedimiento para la asignación de las categorías internacionales de manejo de áreas protegidas de la UICN. Ed. Fundación Fernando González Bernáldez. Madrid. 140pp.

Eycott, A, Watts, K, Moseley, D, Ray, D. 2007. Evaluating Biodiversity in Fragmented Landscapes: The Use of Focal Species. Forestry Commission Information Note, October 2007.

Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics 34:487-515.

Foden, WB, Young, BE (eds.). 2020. Directrices de la CSE de UICN para evaluar la vulnerabilidad de las especies al cambio climático. Versión 1.0. Publicación ocasional de la Comisión de Supervivencia de Especies (de UICN) No. 59. Cambridge, Reino Unido y Gland, Suiza: Comisión para la Sobrevivencia de las Especies de UICN. https://doi.org/10.2305/IUCN.CH.2016.SSC-0P.59.es

Ford, AT, Sunter, EJ, Fauvelle, C. et al. 2020. Effective corridor width: linking the spatial ecology of wildlife with land use policy. European Journal of Wildlife Research 66: 69. https://doi.org/10.1007/s10344-020-01385-y

Gastón, A, Blázquez-Cabrera, S, Garrote, G, Mateo-Sánchez, MC, Beier, P, Simón, MA, Saura, S. 2016. Response to agriculture by a woodland species depends on cover type and behavioural state: insights from resident and dispersing Iberian lynx. Journal of Applied Ecology 53(3): 814-824.

Gregory AJ, Beier P. 2014. Response variables for evaluation of the effectiveness of conservation corridors. Conserv Biol 28: 689–695. https://doi.org/10.1111/cobi.12252

Gross, JE, Woodley, S, Welling, LA, Watson, JEM (eds.). 2016. Adapting to Climate Change: Guidance for Protected Area Managers and Planners. Best Practice Protected Area Guidelines Series, no. 24, Gland, Switzerland: IUCN. https://doi.org/10.2305/IUCN.CH.2017.PAG.24.en

Henle, K, Davies, KF, Kleyer, M, Margules, C, Settele, J. 2004. Predictors of Species Sensitivity to Fragmentation. Biodiversity and Conservation 13:207-251.

Hilty, J.*, Worboys, GL, Keeley, A, Woodley, S, Lausche, B, Locke, H, Carr, M, Pulsford I, Pittock, J, White, JW, Theobald, DM, Levine, J, Reuling, M, Watson, JEM, Ament, R, y Tabor, GM. 2021. Lineamientos para la conservación de la conectividad a través de redes y corredores ecológicos. Serie Directrices para buenas prácticas en áreas protegidas. No. 30. Gland, Suiza: UICN.

Jaeger, JAG. 2000. Landscape division, splitting index, and effective mesh

size. Landscape Ecology 15: 115-130. DOI:10.1023/A:1008129329289.

Jaeger, JAG, Schwarz-von Raumer, H-G, Esswein, H, Müller, M, Schmidt-Lüttmann, M. 2007. Time Series of Landscape Fragmentation Caused by Transportation Infrastructure and Urban Development: a Case Study from Baden-Württemberg, Germany. *Ecology and Society*, 12(1). http://www.jstor.org/stable/26267840

Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373-386.

Jones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as ecosystem engineers. Ecology 78: 1946-1957.

Karlson, M, Mörtberg, U. 2015 A spatial ecological assessment of fragmentation and disturbance effects of the Swedish road network, Landscape and Urban Planning 134: 53-65. DOI: https://doi.org/10.1016/j.landurbplan.2014.10.009

Keeley, AT, Beier, P, Gagnon, JW. 2016. Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landscape Ecology 31(9):2151-2162.

Kettunen, M, Terry, A, Tucker, G, Jones A. 2007. Guidance on the maintenance of landscape features of major importance for wild flora and fauna - Guidance on the implementation of Article 3 of the Birds.

Krebs, CJ. 1985. Ecology. The experimental analysis of distribution and abundance, Third ed. - Harper and Row, New York.

Lambeck, RJ. 1997. Focal Species: A Multi-Species Umbrella for Nature Conservation. Conservation Biology 11(4): 849-856.

Manzano, P. and Malo, J.E. (2006). Extreme long-distance seed dispersal via sheep. Frontiers in Ecology and the Environment 4:244–248. https://doi.org/10.1890/1540-9295(2006)004[0244:ELSD-VS]2.0.CO;2

Mata, C, Hervás, I, Suárez, F, Herranz, J, Malo, JE, Cachón, J, Varela, JM. 2006. Análisis de la eficacia de los pasos de fauna en la autovía A-52 (Rías Bajas). Ingenieria Civil 142: 89-97

Mateo Sanchez, MC, Cushman, SA, Saura, S. 2014. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). International Journal of Geographical Information Science 28(8): 1531-1546.

MARM. 2010. Indicadores de fragmentación de hábitats causada por infraestructuras lineales de transporte. Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte, número 4. O.A. Parques Nacionales. Ministerio de Medio Ambiente y Medio Rural y Marino. 133 pp. Madrid.

MARM. 2011. Modelización de las áreas agrarias y forestales de alto valor natural en España. Informe inédito. Elaborado por IREC. Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid.

McRae BH, Kavanagh DM. 2011. Linkage Mapper Connectivity Analysis Software. The Nature Conservancy, Seattle, WA.

MITECO. 2021. Guía metodológica para la identificación de los elementos de la infraestructura verde de España. Disponible en: https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/infraestructura-verde/iv_guia_metodologica.html

MITECO. 2023. Análisis demostrativo de conectividad ecológica de ecoperfiles de especies en la península ibérica. Disponible en: https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-co-nectividad/infraestructura-verde/iv-eco-perfiles.html

Moser, B, Jaeger, JAG, Tappeiner, U, Tasser, E, Eiselt, B. 2007. Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape Ecology 22: 447-459. DOI:10.1007/s10980-006-9023-0

Olivero, J, Martín, A. 2021. Propuesta Metodológica AVN (Alto Valor Natural) homogénea para España. Ministerio para la Transición Ecológica y el Reto Demográfico. Disponible en: https://www.mi-teco.gob.es/content/dam/miteco/es/biodiversidad/temas/ecosistemas-y-co-nectividad/informefinalavn2021_tcm30-534475.pdf

Paine, RT. 1969. A note on trophic complexity and community stability. *The American Naturalist* 103: 91-93.

Rey Benayas, JM y de la Montaña, E. 2003. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biological Conservation 114: 357-370.

Romero, D, Olivero, J, Brito, JC, Real, R. 2016. Comparison of approaches to combine species distribution models based on different sets of predictors. Ecography 39(6): 561-571.

Rudnick D, Ryan SJ, Beier P et al. 2012. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology 16:1-20.

Rosell C, Álvarez, G, Cahill, S, Campeny, R, Rodríguez, A, y Séiler, A. 2003. COST 341.

La fragmentación del hábitat en relación con las infraestructuras de transporte en España. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente. Madrid, 349 pp.

Sancho, JM, Riesco, J, Jiménez, C, Sánchez de Cos, MC, Montero, J, López, M. 2012. Atlas de radiación solar en España utilizando datos del SAF de clima de EUMETSAT. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente.

Santos, T, Tellería, JL 2006. Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15 (2). Disponible en: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/180

Saura, S. 2013. Métodos y herramientas para el análisis de la conectividad del paisaje y su integración en los planes de conservación. En De la Cruz, M. y Maestre, F. T. (eds.). Avances en el Análisis Espacial de Datos Ecológicos: Aspectos Metodológicos y Aplicados. ECESPA-Asociación Española de Ecología Terrestre. Móstoles. 1-45 pp.

Saura, S, Pascual-Hortal, L. 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landscape and Urban Planning 83:91-103.

Saura, S, Torné, J. 2009. Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modelling and Software 24: 135-139.

Saura, S, Mateo Sánchez, MC, Martín, BF, González, AG. 2016. Estudio para la identificación de redes de conectividad entre espacios forestales de la Red Natura

2000 en España. Fundación Conde del Valle de Salazar. P. 54.

Santos SM, Lourenço R, Mira A, Beja P. 2013. Relative Effects of Road Risk, Habitat Suitability, and Connectivity on Wildlife Roadkills: The Case of Tawny Owls (*Strix aluco*). PLoS ONE 8(11): e79967. https://doi.org/10.1371/journal.pone.0079967

Taylor P D, Fahrig, L, Henein, K, Merriam, G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571-573.

Turner, IM. 1996. Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology 33: 200-205.

UICN. 2008. Directrices para la aplicación de las categorías de gestión de áreas protegidas. Gland, Suiza. 96pp.

US Geological Survey. 1996. GTOPO30. Land Processes Distributed Active Archive Center.

Vos, CC, Verboom, J, Opdam, PFM, Ter Braak, CJF. 2001. Toward ecologically scaled landscape indices. The American Naturalist, 157: 24-41.

Zuur, AF, Hilbe, JM, Ieno, EN. 2013. A beginnerr's guide to GLM and GLMM with R. A frequentist and Bayesian perspective for ecologists. United Kingdom. Highland Statistics Ltd.

La fragmentación y pérdida de hábitats naturales es un factor clave en la crisis de biodiversidad, impulsado por diversas causas, entre ellas las infraestructuras de transporte. En España, la extensa red de transporte incluye decenas de miles de kilómetros de carreteras y vías férreas de distinta tipología. Estas infraestructuras actúan como barreras que afectan los desplazamientos de la fauna, provocando una fragmentación de hábitats que amenaza la biodiversidad en Europa.

Desde 1999, el Ministerio para la Transición Ecológica y el Reto Demográfico, a través de la Subdirección General de Biodiversidad Terrestre y Marina, coordina el Grupo de Trabajo de Fragmentación de Hábitats causada por Infraestructuras de Transporte. Este grupo ha desarrollado documentos para mitigar la fragmentación causada por las infraestructuras de transporte.

Particularmente, el documento de prescripciones técnicas número 6 elaborado en el año 2013 identificó tramos prioritarios de vías para la desfragmentación. Dicha publicación se basó en la cartografía existente entonces y diversa información ecológica, incluyendo la distribución y estado de conservación de especies, hábitats, corredores ecológicos y registros de siniestralidad vial con fauna. A partir de estos datos, se calcularon índices para identificar áreas prioritarias en cada Comunidad Autónoma.

En la presente publicación se han revisado y actualizado los datos respondiendo a avances técnicos y científicos, así como a la mayor disponibilidad de información. Se identificaron áreas prioritarias que requieren intervenciones de desfragmentación, dirigidas a actores involucrados en la gestión de infraestructuras de transporte. El documento actualizado detalla procedimientos técnicos y criterios científicos, ofreciendo herramientas para evaluar la fragmentación e identificar zonas que requieren intervenciones.

El nuevo documento se estructura de manera que facilita la comprensión y aplicación de los procedimientos, comenzando con una visión general, seguida del desarrollo metodológico de cada índice y su integración, así como los análisis que llevaron a identificar las áreas más relevantes para la desfragmentación en España.

