Seminario:

Las nuevas tecnologías aplicadas al conocimiento de los ecosistemas forestales - IFN5

Valsaín, Segovia, 5-7 de junio de 2024

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO PARA LA TRANSICIÓN ECOLÓGIO

Experiencias LiDAR multiplataforma para la estimación de variables forestales: SLS Gedi, ALS PNOA, UAV, HMLS

Juan de la Riva^{1,3}, Darío Domingo^{1,2,3}, Raúl Hoffrén^{1,2}, Teresa Lamelas^{1,3,4}, Antonio Montealegre^{1,3,4}

¹ Grupo de investigación GEOFOREST, Instituto Universitario de Ciencias Ambientales (Universidad de Zaragoza) – "Team LiDAR"

- ² Grupo de investigación CAMBIUM, iuFOR-EFAB (Universidad de Valladolid)
- ³ Departamento de Geografía y Ordenación del Territorio (Universidad de Zaragoza)

⁴ Centro Universitario de la Defensa (Academia General Militar)

- Introducción
- Estimación de variables forestales
 - Áreas de estudio
 - Tipos de plataformas LiDAR
 - Experiencias con LiDAR PNOA
 - Variables forestales
 - Transferibilidad
- Tipos de combustible Prometheus
- Actividad por plataformas LiDAR
 - Aeroportado PNOA
 - PNOA SAR Spot
 - PNOA Sentinel
 - PNOA DART
 - PNOA Fotogrametría
 - Satélite GEDI
 - Dron LiDAR
 - Terrestre HMLS
- Conclusión

Instituto Universitario de Investigación en Ciencias Ambientales de Aragón Universidad Zaragoza

Experiencias LiDAR multiplataforma para la estimación de variables forestales: SLS Gedi, ALS PNOA, UAV, HMLS

Áreas de estudio

Información de campo y áreas de estudio:

- 192 (51 de föra) parcelas de inventario *Pinus halepensis*
- 11 áreas incendiadas:
 - 136 parcelas inventario forestal, de vegetación y modelo combustible
 - 169 parcelas CBI
- 3 espacios Red Natura 2000

Cartografía de variables dasométricas:

- Áreas objeto estudio
- Masas *Pinus halepensis* Aragón (e.g.: biomasa residual)

Áreas de estudio

Información de dron y láser terrestre en masas de *P. halepensis*:

- 43 parcelas HMLS
- 82 parcelas con nubes de puntos fotogramétricas, datos RGB y multiespectrales
- 73 parcelas CON nubes de puntos LiDAR UAV

Tipos de plataformas LiDAR

- **Terrestre móvil MLS**
- UAV
- **Aerotransportado ALS** \bullet
- **Satelital SLS**

y precisión

Mayor distancia al

objeto y menor escala de detalle y

Extracción de información de las nubles de puntos LiDAR

- 1) Escala de árbol: localización de árboles individuales y obtención de atributos de árbol (por ejemplo, altura máxima del árbol, área de la copa, área basal ...)
- 2) Escala de parcela o área: los atributos se estiman sobre un área definida (cuadrada, rectangular o circular). Por ejemplo, altura máxima de la parcela, área basal, percentiles de altura, etc.

Extracción de información de las nubles de puntos LiDAR

A) "Resumir" los datos LiDAR en un ráster

B) Seleccionar parcelas de muestreo

C) Extracción de datos de cada parcela

D) Analizar las métricas y establecer relaciones estadísticas

		120	
		N. A	
render N	and the	1.	
1987		Main :	. 😵
A CONTRACT			

Nube de puntos original

Métricas LiDAR	Características
Percentiles (P), altura mínima, máxima,	Relacionadas directamente con la altura del
media y moda.	uosei.
Desviación típica (SD), coeficiente de	Caracterizan la variabilidad, dispersión y
variación (CV), rango intercuartílico (IQ),	forma de la distribución de las alturas del
asimetría y curtosis.	dosel.
Porcentajes de primeros o todos los retornos sobre un umbral de altura.	Relacionadas con la densidad y cobertura del dosel.

nventario

Clasificar el estado de conservación en robledales

(https://doi.org/10.3390/rs15030710)

Métricas LiDAR. RF (76% a 88%) masas de quercus

•

 Sentinel 2 no mejora las clasificaciones

Estimación de variables dasométricas

(https://doi.org/10.1093/forestry/cpw008)

- Regresión linear multivariante
- Hm (0,87 R²), Dg (0,84 R²), G (0,89 R²), V (0,89 R²), N (0,48 R²), CR (0,60 R²)

Pérdidas de biomasa y emisiones de CO₂ en incendio

(https://doi.org/10.1080/22797254.2017.1336067; https://doi.org/10.1080/15481603.2017.1320863)

- Biomasa prefuego: regresión linear (0,88 R²; 11,08 %RMSE).
- Biomasa perdida (dNBR y factores de eficiencia de combustión)
 - Carbono y emisiones de CO₂

 Evaluar la transferibilidad temporal de modelos comparando el **enfoque directo** y el **indirecto**, para predecir 7 variables forestales usando datos LiDAR multi-temporales.

Transferibilidad temporal

 Actualización de datos de inventario al año LiDAR usando modelos de crecimiento de árbol individual.

Experiencias con LiDAR- PNOA

Enfoque indirecto

- Tree biomass (W)

Transferibilidad temporal

- Elevada precision modelos de crecimiento de árbol individual para generar datos concomitantes con información LiDAR
- All subsets selection Seqrep y SVM con kernel radial proporciona los mejores resultados en el enfoque indirecto (se usa para el analisis de transferibilidad temporal)
- Enfoques directos e indirecto proporcionan **resultados similares**
- Enfoque directo reduce tiempo y costes de inventarios y de generación de modelos.

Enfoque directo

% RMSE 2016

* t: modelo transferido

Tipos de combustible EU Prometheus

- Sistema mediterráneoeuropeo (Comisión Europea, 1999; Riaño et al., 2002; Arroyo et al., 2008), ampliamente utilizado para cartografiar tipos de combustibles en otras regiones.
- Adapta la clasificación NFFL.
- El criterio de clasificación es el tipo, densidad y altura del elemento de propagación dividido en tres grandes grupos: pasto, matorrales u hojarasca.
- 7 tipos de combustible.

LiDAR PNOA – SAR – Spot 5

CENAD108 parcelas
inventarioClasificación digital
(Máxima probabilidad)72,7% acierto global,
Kappa 0,7

Cartografía de modelos de combustible mediante combinación

de imágenes LiDAR, SAR Adiestramiento "San Greg

```
Montealegre Gracia, Antonio Luis <sup>1,3,</sup>*,
Alberto <sup>2,3</sup>, de la Rivo Fernández, Juan <sup>1</sup>
```


http://cud.uvigo.es/images/Documentacion/deseid2015/actas2015.pdf

Nultibanda	Acierto	Índice
	global	Карра
Bandas SPOT-5	59,2 %	0,5
Bandas SPOT-5 + NDVI + BL1,4,5,6,7,8 + EM, P ₇₅ , V, %Ret	72,7 %	0,7
ACP componentes 1 a 9 (bandas SPOT-5 + NDVI + BL1,4,5,6,7,8 + EM, P ₇₅ , V, %Ret)	61,4 %	0,6
MNF componentes 1 a 8 (bandas SPOT-5 + BL1,4,5,6,7,8+ EM, P ₇₅ , V, %Ret) + NDVI	72,3 %	0,7

Comparación de los mejores resultados derivados de la clasificación digital. Índice Kappa con un nivel de significación estadística P-valor≤ 0,01.

8 bandas LiDAR (BL) de densidad de retornos: 0-0,5 m (BL1), 2-4 m (BL4), >4 m (BL5), 3-3,5 m (BL6), 3,5-4 m (BL7) y 1-4 m (BL8).

TIPOS DE COMBUSTIBLE

	TIPOS DE COMBUSTIBLE											
		1	2	3	4	5	6	7	Suelo desnudo	TOTAL		
	Nº de píxeles	27	4	0	1	0	0	0	4	36		
1	%	75,0%	11,1%	0,0%	2,8%	0,0%	0,0%	0,0%	11,1%	100,0%		
-	Nº de píxeles	1	35	10	0	1	0	0	3	50		
2	%	2,0%	70,0%	20,0%	0,0%	2,0%	0,0%	0,0%	6,0%	100,0%		
	Nº de píxeles	0	7	10	2	0	1	0	0	20		
3	%	0,0%	35,0%	50,0%	10,0%	0,0%	5,0%	0,0%	0,0%	100,0%		
4	Nº de píxeles	0	0	2	16	0	0	0	0	18		
4	%	0,0%	0,0%	11,1%	88,9%	0,0%	0,0%	0,0%	0,0%	100,0%		
-	Nº de píxeles	0	0	2	2	40	8	4	0	56		
5	%	0,0%	0,0%	3,6%	3,6%	71,4%	14,3%	7,1%	0,0%	100,0%		
6	Nº de píxeles	0	0	0	2	5	10	1	0	18		
6	%	0,0%	0,0%	0,0%	11,1%	27,8%	55,6%	5,6%	0,0%	100,0%		
_	Nº de píxeles	0	0	0	4	0	3	22	0	29		
/	%	0,0%	0,0%	0,0%	13,8%	0,0%	10,3%	75,9%	0,0%	100,0%		
Suelo	Nº de píxeles	1	4	1	0	0	0	0	34	40		
desnudo	%	2,5%	10,0%	2,5%	0,0%	0,0%	0,0%	0,0%	85,0%	100,0%		
	Nº de píxeles	29	50	25	27	46	22	27	41	267		
IUIAL	%	10,9%	18,7%	9,4%	10,1%	17,2%	8,2%	10,1%	15,4%	100,0%		

LiDAR PNOA – Sentinel 2

remote sensing

https://doi.org/10.3390/rs12213660

Article

Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean **Forest Affected by Wildfires**

	,	Metrics	Method	Fitting phase	Validation
Dario Domingo ^{1,2,*} , Juan de la Riva ² , Maria T Alberto Garcia-Martin ^{2,3} , Paloma Ibarra ² , Maite _{Map of each study site}			SVMr	0.73	0.59
		P25 + % all ret. above mean + NDVI + rumple	SVMl	0.67	0.56
Montmajor	or Requena	i vid vi i rumpic	RF	0.99	0.56
			SVMr	0.62	0.57
	All a	P25 + % all ret. above mean + rumple	SVMl	0.66	0.58
			RF	0.99	0.54
Legend Ye Pastures Wildfire Shrubland Surroundings	iste		SVMr	0.48	0.37
Quercus itex • Field plots Quercus faginea Quercus pubescens Mixture of pinus	Strubang Quercus faginea Quercus publications Quercus publications Quercus publications	NDVI + NBR + Wetness + Brightness + NIR	SVMl	0.53	0.38
Pinus sylvestris Source Spanish Forest Map (Rodrigues et al. 2014) Pinus pinaster Pinus nigra			RF	0.99	0.18

remote sensing

104 parcelas

Modelos de2011 SVM-L: 0,88 - 2016 SVM-R / 0,91 - P80,transferencia radiativaElevación LCV, Media 0-0,6, Rumple, LHDI

https://doi.org/10.3390/rs13030342

Validation

OA

0.69

0.88

0.72

0.91

104 parcelas

Modelos de2011 SVM-L: 0,88 - 2016 SVM-R / 0,91 - P80,transferencia radiativaElevación LCV, Media 0-0,6, Rumple, LHDI

104 parcelasModelos de
transferencia radiativa2011 SVM-L: 0,88 - 2016 SVM-R / 0,91 - P80,
Elevación LCV, Media 0-0,6, Rumple, LHDI

1. Preselección de las métricas LiDAR

- Coeficientes de correlación de Spearman (Rho).
- Selección de todos los subconjuntos: exhaustivo, hacia delante, hacia atrás y remplazo secuencial. Uso del paquete leaps.

2. Support Vector Machine con kernel linear y radial ("e1071" R package)

• Muestra de entrenamiento: simulado 2011.

• Parametrización de cost (1-1.000) y gamma (0,01-1).

 Análisis de la capacidad de clasificación de los modelos y transferibilidad.

- Estadísticos: Accuracy y kappa.
- Validación clasificación: PNOA 2011
- Validación transferibilidad: PNOA 2016

Correlación y RMSE entre las métricas de las nubes simuladas y las reales del PNOA

		2011		2016			
Variable	Correlación	RMSE	%RMSE (PNOA 2011)	Correlación	RMSE	%RMSE (PNOA 2016)	
P25	0,11	1,28	1,52	0,34	1,18	2,29	
P50	0,69	2,16	1,06	0,75	1,46	0,78	
P75	0,94	1,28	0,45	0,92	1,30	0,44	
P95	0,94	1,42	0,38	0,95	1,40	0,35	
Elevación media	0,92	1,13	0,59	0,92	1,00	0,54	
Elevación máxima	0,93	1,92	0,42	0,97	1,62	0,31	
Elevación cuadratica media	0,94	1,04	0,44	0,96	0,97	0,41	
Elevación cúbica media	0,94	1,03	0,40	0,97	0,95	0,35	
Desviación absoluta media	0,95	0,40	0,37	0,95	0,45	0,36	
Distancia intercuartílica	0,92	1,16	0,57	0,91	1,19	0,48	
Desviación estándar	0,95	0,46	0,35	0,97	0,43	0,30	
Varianza	0,95	1,20	0,37	0,97	1,80	0,48	
Primeros retornos sobre la media	0,54	169,13	1,02	0,34	429,42	1,13	
Porcentaje de todos los retornos sobre la moda	0,35	54,26	0,58	0,59	41,63	0,48	
Media de los retornos de 0 a 0,6	0,33	0,11	1,70	0,36	0,07	0,45	
Proporción de retornos de 0 a 0,6	0,41	0,39	0,69	0,77	0,36	0,59	
Media de los retornos de D,6 a 2	0,52	0,88	0,91	0,71	0,52	0,53	
Proporción de retornos de 0,6 e 2	0,22	0,13	1,70	0,56	0,12	1,07	
Media de los retornos de 2 a 4	0,65	1,50	0,72	0,74	1,34	0,64	
Proporción de retornos de 2 a 4	0,72	0,17	1,20	0,73	0,12	1,37	
Media de los retornos superiores a 4	0,89	1,62	0,51	0,94	1,55	0,47	
Proporción de reformos superiores a A	0,91	0,19	0,91	0,93	0,18	0,89	

104 parcelasModelos de
transferencia radiativa2011 SVM-L: 0,88 - 2016 SVM-R / 0,91 - P80,
Elevación LCV, Media 0-0,6, Rumple, LHDI

Reference										
Fredicted	Fuel type I	l Fuel type 2	Fuel type 3	fuel type 4	Fuel type 5	Fuel type 0	Fuel type 7	Totai plots	User's accu- tacy (%)	
Fuel type 1	II	4	0	0	0	D	D	15	73,3	
Fuel type 2	1	17	1	0	D	Ú	Û	19	89.5	
Fuel type 3	1	Ε	14	D	Ø	0	0	18	77.8	
Fuel type 4	0	0	0	8	1	0	0	9	88,9	
Fuel type 5	0	Ø	0	D	19	0	0	19	100	
Fuel type 6	0	0	0	D	1	9	0	10	90.0	
Fuel type 7	ø	0	Ø	0	Ű.	0	14	14	100	
Total plots	13	24	15	8	21	9	14	104	88.51	
Producer's accu racy (%)	54.6	70.8	93,3	100	90,5	100	100	<u>91.3</u> 2	<u>58.5*</u>	

Table 11. Confusion matrix for the most accurate classification model after validation for year 2016. * Overall accuracy, ¹ Mean user's accuracy. ² Mean producer accuracy.

Reference										
Predicted	Fuel type 1	Fuel type 2	Fuel type	3 Fuel type 4	Fuel type 5	Fuel type 6	Fuel type 7	Total plots	User's accuracy (⁹ 9)	
Fuel type 1	9	1	0	0	Ø	Û	Û	10	90,0	
Fuel type 2	4	23	1	.0	0	0	0	28	82,1	
Fuel type 3	0	0	14	0	O	0	0	14	100	
Fuel type 4	0	0	Ø	s	0	U	U	8	100	
Fuel type 5	0	0	0	0	21	2	D	23	91,3	
Fuel type 6	σ	a	Ø	σ	0	tr	Ũ	б.	100	
Fuel type 7	D	0	0	0	0	1	14	15	93,3	
Total plots	13	24	15	8	21	5	14	104	93.81	
Producer's accu- racy (%)	692	95.8	93,3	100	100	66,7	100	<u>89.32</u>	<u>91,3*</u>	

RESULTS: OVERALL ACCURACY

Point cloud metrics	Year Method		Fitting phase OA	Validation OA	
	2011	SVM1	0.68	0.69	
P80 + Elev. L.CV + Mean	2011	SVMr	0.73	0.88	
0_0.6 + Rumple + LHDI	2016	SVMI	0.76	0.72	
	2016	SVMr	0.85	0.91	

LiDAR Satélite GEDI

CENAD

2 cartografías previas Clasificación (RF, SVM) con GEDI (59.554-9.703-1.112 huellas) y Landsat 8 OLI

SVM-LR: 83,71 / P85, Plant Area Index, Aboveground Biomass Density de GEDI, Brillo Landsat-8 OLI

Table S4. Confusion matrix of the SVM-R mode(overall accuracy = 61.54%; kappa =

0.51) for the selected GEDI variables (RH85 + PAI + AGBD).

Table S5. Confusion matrix of the SVM-L model (overall accuracy = 57.46%; kappa =

0.45) for the selected GEDI variables (RH85 + PAI + AGBD).

Table S6. Confusion matrix of the RF model (overall accuracy = 61.54%; tappa = 0.51) for

the selected GEDI variables (RH85 + PAI + AGBD).

Fuel types	FT1	FT2	FT3	FT4	FT5	FT7	User's accuracy
FT1	51	14	1	0	0	0	77.27%
FT2	6	13	6	4	0	2	41.94%
FT3	4	8	18	9	0	3	42.86%
FT4	0	4	9	13	0	2	46.43%
FT5	0	0	0	0	0	0	0.00%
FT7	0	3	4	4	2	41	75.93%
Producer's accuracy	83.61%	30.95%	47.67%	43.33%	0.0%	85.42%	

LiDAR Satélite GEDI

Fig. 4. Distribution values of the selected GEDI and Landsat-8 OLI variables for the *Prometheus* fuel types classification.

CENAD2 cartografías
previasClasificación (RF, SVM) con
GEDI (59.554-9.703-1.112
huellas) y Landsat 8 OLISVM-LR: 83,71 / P85, Plant Area
Index, Aboveground Biomass Density
de GEDI, Brillo Landsat-8 OLI

 Table S7. Confusion matrix of the SVM-R model (overall accuracy = 81.90%; tappa =

0.77) for the selected GEDI and Landsat-8 OLI variables (RH85 + PAI + AGBD +

Brightness).

Table S8. Confusion matrix of the SVM-L model (overall accuracy = 81.00%; kappa =

0.76) for the selected GEDI and Landsat-8 OLI variables (RH85 + PAI + AGBD +

Brightness).

Table S9. Confusion matrix of the RF model (overall accuracy = 83.71%; kappa = 0.79) for

the selected GEDI and Landsat-8 OLI variables (RH85 + PAI + AGBD + Brightness).

Fuel types	FT1	FT2	FT3	FT4	FT5	FT7	User's accuracy
FT1	59	5	0	0	0	0	92.19%
FT2	2	36	5	0	0	1	81.82%
FT3	0	1	27	6	0	0	79.41%
FT4	0	0	5	19	0	3	70.37%
FT5	0	0	0	1	0	0	0.00%
FT7	0	0	1	4	2	44	86.27%
Producer's accuracy	96.72%	85.71%	71.05%	63.33%	0.00%	91.67%	

PNOA – UAV Fotogrametría

Remote Sensing Applications: Society and Environment 31 (2023) 100997

Contents lists available at ScienceDirect Remote Sensing Applications: Society and Environment journal homepage: www.elsevier.com/locate/rsase

UAV-derived photogrammetric point clouds and multispectral indices for fuel estimation in Mediterranean forests

Raúl Hoffrén^{a, a}, María Teresa Lamelas^{a, b}, Juan de la Riva^a

^a Geoforest-IUCA, Department of Geography and Land Management, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Sj ^b Centro Universitario de la Defensa, Academia General Milliar, Cira, de Huesca s/n, 50090, Zaragoza, Spain

https://doi.org/10.1016/j.r sase.2023.100997

Aragón

82 parcelas

Sensores

- Sony WX (RGB)
- Parrot Sequoia (4 bandas multiespectrales: Green-Red-RedEdge-NIR)

Nubes de puntos RGB: 3000 ptos/m²; multiespectral: 85 ptos/m²).P50, coef. variación, % retornos >4 m, disimilitud textural media y índice de clorofila verde RF: 71% / muestra de datos integrada con nubes de puntos normalizadas a 0,5 m de DEM

PNOA – UAV Fotogrametría

Variables selection

Aragón 82 parcelas

Nubes de puntos RGB: 3000 ptos/m²; multiespectral: 85 ptos/m²).P50, coef. variación, % retornos >4 m, disimilitud textural media y índice de clorofila verde RF: 71% / muestra de datos integrada con nubes de puntos normalizadas a 0,5 m de DEM

Muestras de datos:

•

- Muestra RGB: variables estructurales y texturales relevantes de la cámara RGB. Muestra de datos
- MS: variables estructurales, texturales y espectrales del sensor multiespectral.
- Muestra integrada: variables estructurales y texturales de la cámara RGB más la variable espectral del sensor multiespectral.

Dunn's test

Most relevant variables to include in the Machine Learning classification models

Support Vector Machine
with radial kernel
(SVM-R)Support Vector Machine
with linear kernel
(SVM-L)Random Forest
(RF)

PNOA – UAV Fotogrametría

Aragón 82 parcelas

Prometheus fuel types

Nubes de puntos RGB: 3000 ptos/m²; multiespectral: 85 ptos/m²).P50, coef. variación, % retornos >4 m, disimilitud textural media y índice de clorofila verde RF: 71% / muestra de datos integrada con nubes de puntos normalizadas a 0,5 m de DEM

Fuel type	FT1	FT2	FT3	FT4	FT5	FT6	FT7	User's accuracy
FT1	98	0	10	10	0	0	0	83%
FT2	2	90	37	0	0	0	0	70%
FT3	0	16	31	10	0	0	0	54%
FT4	0	4	2	47	0	0	9	76%
FT5	0	0	0	0	73	29	10	65%
FT6	0	0	0	0	17	54	29	54%
FT7	0	0	0	3	10	37	192	79%
Prod.'s accuracy	98%	82%	39%	67%	73%	45%	80%	

Please find enclosed our manuscript:

Classification and mapping of fuels in Mediterranean forests using a LiDAR unmanned aerial vehicle and integration possibilities with handheld mobile laser scanner systems by Raül Hoffrén, María Teresa Lamelas, and Juan de la Riva.

DJI Zenmuse L1 (LiDAR)

Combustibles LiDAR UAV - HMLS	gón 7	73 parcelas UAV	Modelos RF: 81,3%
	4	13 parcelas HMLS	SVM-L: 75,1% / SVM-R: 78,3%

- Distribución de las alturas: Altura mínima, máxima, media; percentiles de altura.
- Variabilidad de las alturas: Varianza, desviación estándar, coeficiente de variación.
- Densidad del dosel: Total y porcentaje de puntos a umbrales de altura (< 0,60, 0,60-2, 2-4, >4 m).
- Índices de diversidad estructural: LHDI, LHEI, rumple index.

0 50 100

50 100

FT7

Evaluación del rendimiento de los modelos

Espacialización del mejor modelo (RF) (resolución: 20 m)

Model	o de cla	sificacio	ón C	oeficie	nte "ac	curacy	/"	1	2
RF			8	1,28%				ay47(FT5)	av06/(ET6)
SVM-L			7	5,10%					
SVM-R			7	8,32%				av48/(ET5)	
Tipo comb.	2	3	4	5	6	7	User acc.	0 50 100	ay15 (FT6)
2	99	20	0	0	0	0	83%		
3	10	42	0	10	0	8	60%		
4	1	0	50	0	0	0	98%		
5	0	0	0	120	0	10	92%		
6	0	0	0	0	91	31	75%		
7	0	8	0	10	29	191	80%		
Prod. acc.	90%	60%	100%	86%	76%	80%		Forest plots Promether	us fuel types: FT1-FT2 FT3

Combustibles HMLS

Aragón 4

https://doi.org/10.3390/fire7020059

Article Evaluation of Handheld Mobile Laser Scanner Systems for the Definition of Fuel Types in Structurally Complex Mediterranean Forest Stands

Raul Hoffren 1,200, Maria Teresa Lamelas 2,300 and Juan de la Riva 1,2,410

HMLS unit

Combustibles HMLS

Combustibles HMLS

Conclusión

Año / Tema	Área estudio	Nº parcelas	Método	Ajuste	DOI
2014 – Severidad fuego	Aragón	4 incendios	Estimar severidad de incendio medida en campo (CBI) con variables LiDAR: regresión logística	Severidad: 85,5% precisión	<u>https://doi.org/10.3390</u> /rs6054240
2016 – Variables estructurales	CENAD	45 parcelas inventario	Regresión linear multivariante	Hm (0,87 R ²), Dg (0,84 R ²), G (0,89 R ²), V (0,89 R ²), N (0,48 R ²), CR (0,60 R ²)	https://doi.org/10.1093 /forestry/cpw008
2017 - Estimación AGB y emmisiónes de CO2 ante potencial incendio	CENAD	45 parcelas inventario	Regresión linear multivariante y análisis de parámetros que afectan a la precisión del modelo	AGB: 0,84 R ² ; 27,35 %RMSE. La pendiente, orientación, cobertura, ángulo de escaneo y nº de retornos laser no afecta a la estimación.	https://doi.org/10.1080 /15481603.2017.13208 63
2017 - Pérdida biomasa y emisión CO ₂	Prepirineo	46 parcelas inventario en 1 incendio	Biomasa pre-fuego. Biomasa perdida (dNBR y factores de eficiencia de combustión). Carbono y emisiones de CO ₂ .	Regresión linear multivariante: 0,88 R ² ; 11,08 %RMSE	https://doi.org/10.1080 /22797254.2017.13360 67
2018 - Biomasa total	CENAD - Ayerbe	83 parcelas inventario	Actualización de inventarios a año LiDAR. Métodos de selección de variables. Modelado (paramétrico y no paramétrico)	Selección por todos los subconjuntos. Regresión linear multivariante: 0,87 R ² ; 19,21 %RMSE	<u>https://doi.org/10.3390</u> /f9040158
2019 - Biomasa residual	Aragón	192 parcelas inventario	Actualización de inventarios a año LiDAR. Métodos de selección de variables. Modelado (paramétrico y no paramétrico). Análisis de parámetros que afectan a la precisión del modelo.	Selección variables: Spearman. SVM con kernel radial: 0,82 R ² ; 26,38 %RMSE. Incremento precisión: densidad (> 1p/m ²), menor ángulo de escaneo (<5°) y mayor penetración del pulso en el dosel (75%). Menor precisión: pendientes elevadas (>15%)	https://doi.org/10.1080 /15481603.2019.16416 53
2019 - Transferibilidad temporal	CNAD - Sistema Ibérico	147 parcelas inventario	Actualización datos campo: modelo de crecimiento de árbol individual (PHRAGON-2017). Comparación enfoque directo e indirecto (LiDAR multitemporal).	Enfoque directo proporciona resultados similares al indirecto y reduce el tiempo y costes de inventario y generación de modelos. Selección por todos los subconjuntos. SVM con kernel radial (N, Ho, G, Do, Dg, V, W): 0,6-0,9 R ² ; 8,8 - 48,1 %RMSE	<u>https://doi.org/10.3390</u> /rs11030261
2020 – Diversidad estructural en zonas incendiadas	CENAD	6 incendios	Distinguir con variables LiDAR: quemado vs no quemado; fecha del incendio; incendios antiguos vs recientes. Análisis de diferencias estadísticamente significativas (Kruskal- Wallis) y modelos de clasificación (k-NN; SVM; RF).	Incendios recientes: 70% retornos LiDAR en estrato herbáceo y arbustivo; bajos valores de diversidad estructural. Incendios hace 20 años: recuperación parcial estrato arbustivo y arbolado y valores diversidad estructural. Clasificación quemado vs no quemado RF 89% ; fecha incendio SVM 69%; incendio antiguo vs reciente SVM 75%.	https://doi.org/10.1080 /15481603.2020.17380 60
2021 - Severidad fuego y cambios estructurales	Incendio Moncayo (ZGZ)	1 incendio	Cambios estructurales generados por incendio (LiDAR multitemporal prefuego y 4 años postfuego) y correlación con la severidad del incendio (dNBR) en masas de quercinias y pinar.	Disminución de altura, densidad del dosel, variabilidad y diversidad estructural (menos estratos). Huecos más grandes y reducción de huecos pequeños. Alta correlación severidad vs descenso de la densidad del dosel (encinar). Alta correlación severidad vs descenso de altura y variabilidad estructural (pinar).	https://doi.org/10.7818 /ECOS.2103
2023 - Estado conservación	Navarra robledales (Red Natura 2000)	3 zonas	Clasificación de estado de conservación de masas de robledal (cobertura, pendiente y altura) con LiDAR y Sentinel-2 (RF, SVM)	RF 83% Quercus robur (9160); 76% Quercus pyrenaica (9230); 88% Quercus faginea (9240). Sentinel 2 no mejora las clasificaciones sustancialmente.	<u>https://doi.org/10.3390</u> /rs1503071 <u>0</u>

Conclusión

Año / Tema	Área estudio	Nº parcelas	Método	Ajuste	DOI	
2015 - Combustibles PNOA - SAR - Spot5	CENAD	108 parcelas	Clasificación digital (Máxima probabilidad)	72,7% acierto global, Kappa 0,7	http://cud.uvigo.es/ima ges/Documentacion/des eid2015/actas2015.pdf	
2020 - Combustibles PNOA y Sentinel 2	Este de España	136 parcelas / 3 incendios	Clasificación (RF, SVM) con LiDAR y Sentinel-2	SVM-R: 59% / P25 - % retornos sobre la media, Rumple, NDVI	https://doi.org/10.3390/ rs12213660	
2021 - Combustibles DART	CENAD	104 parcelas	Modelos de transferencia radiativa	2011 SVM-L: 0,88 - 2016 SVM-R / 0,91 - P80, Elevación LCV, Media 0-0,6, Rumple, LHDI	<u>https://doi.org/10.3390/</u> <u>rs13030342</u>	91,3 %
2023 - Combustibles GEDI	CENAD	2 cartografías previas	Clasificación (RF, SVM) con GEDI (59.554- 9.703-1.112 huellas) y Landsat 8 OLI	SVM-LR: 83,71 / P85, Plant Area Index, Aboveground Biomass Density de GEDI, Brillo Landsat- 8 OLI	<u>https://doi.org/10.1016/</u> j.jag.2022.103175	83,7 %
2023 - Combustibles Fotogrametría dron	Aragón	82 parcelas	Nubes de puntos RGB: 3000 ptos/m ² ; multiespectral: 85 ptos/m ²). P50, coef. variación, % retornos >4 m, disimilitud textural media y índice de clorofila verde	RF: 71% / muestra de datos integrada con nubes de puntos normalizadas a 0,5 m de DEM	https://doi.org/10.1016/ j.rsase.2023.100997	71 %
2024 - Combustibles LiDAR UAV y HMLS	Aragón	73 parcelas UAV 43 parcelas HMLS	Modelos RF: 81,3% SVM-L: 75,1% / S	VM-R: 78,3%	IN PRESS	81,3 %
2024 - Combustibles HMLS	Aragón	43 parcelas	Medición directa / Voxelización / Iden	tificación	https://doi.org/10.3390/ fire7020059	